Выбрать главу

Однако, несмотря на разнообразно установленную немыслимость этого предмета и несмотря на то, что геометры находятся в немалом смущении [по этому вопросу], как раз Аристотель [301] утверждает, что выдвигаемая ими длина без ширины вовсе не является немыслимой, но что она может появиться в области нашей мысли без всяких трудностей. Он строит свое рассуждение на некотором очевидном и ясном примере, а именно: длина стены, говорит он, берется нами без внимания к ее ширине. Вследствие этого и выдвигаемая у геометров длина без всякой ширины тоже может быть мыслима, поскольку явления суть видение неочевидного. Но Аристотель заблуждается или, может быть, софистически нас обманывает. Ведь когда мы мыслим длину стены без ширины, то мы мыслим ее не без всякой ширины, но без той ширины, которая относится к стене, почему и оказывается возможным, сочетая длину стены с какой-то шириной, сколь угодно малой, получить понятие [стены без ширины]. Поэтому длина берется в настоящем случае не без всякой ширины, как этого требуют ученые, по только без такой-то данной ширины. Однако Аристотелю надлежало установить не то, что выдвигаемая, согласно геометрам, длина не причастна к такой-то ширине, но что она лишена всякой ширины [вообще]. А этого он не доказал.

[5. ЛИНИЯ И ПОВЕРХНОСТЬ]

Вот что [можно сказать] об этом. Однако, поскольку геометры называют линию, которая есть длина без ширины, также и границей поверхности, то мы построим более общую апорию относительно линии и поверхности сразу [302]. А таким образом легко будет дискредитировать и рассуждение относительно тела.

Действительно, если линия есть граница поверхности, будучи [к тому же] длиной без ширины, то ясно, что когда мы приставим одну поверхность к другой, то или две линии окажутся одна возле другой, или обе окажутся одной. И если две линии становятся одной, то, поскольку линия есть граница поверхности, а поверхность — граница тела, при слиянии двух линий в одну сольются в одну и две поверхности; а если две поверхности стали одной, то по необходимости и два тела станут одним телом, если же два тела стали одним, то приставление уже не будет приставлением, но [неразличимым] единением. А это невозможно. Ведь в отношении одних тел приставление [одного к другому] может стать единением (как, например, в отношении воды и подобного ей), в отношении же других не может. Так, если камень приставить к камню, железо к железу и сталь к стали, то здесь нет единения по линии, значит, две линии не могут стать одной.

Так же и иначе. Если действительно существует единение двух линий, становящихся одной, и также слияние тел, то неизбежно, чтобы разделение их возникало в результате разрыва не по тем же самым границам, но по частям, все разным и разным, так что должно было бы возникнуть и уничтожение [самих границ]. Однако этого явления вовсе не усматривается, но границы тел и до присоединения, и после присоединения оказываются теми же самыми, какими они являлись и раньше, в процессе самого присоединения. Следовательно, две линии не становятся одной.

Впрочем, если бы две линии даже становились одной, то нужно было бы, чтобы присоединяемые друг к другу тела становились на один край меньше. Ведь две линии стали одной, которая должна иметь и одну границу и один край. Однако присоединяемые друг к другу тела не становятся меньше на один край. Поэтому две линии не могут стать одной линией.

Однако если две линии с присоединением одного тела к другому пойдут одна возле другой, то составленное из двух линий будет больше одной линии. Если же то, что возникает из двух линий, больше одной линии, то каждая из них должна обладать шириной, которая в соединении с другой шириной создает большее расстояние. И таким образом, линия не есть длина без ширины.

Следовательно, одно из двух: или нужно отбросить очевидность, или, если она остается, нужно устранить мнение геометров, согласно которому они полагают, что линия есть длина без ширины.

Итак, вот что нужно нам прежде всего сказать против принципов геометрии. Однако, переходя к дальнейшему, мы выставим учение, что исследование не может сдвинуться с места с точки зрения их же собственной предпосылки.

Как известно, их мнение таково, что прямая линия, как мы и говорили выше [303], своим вращением всеми своими частями описывает круг. Однако с этой теоремой, хотя она и очень содержательная, находится в противоречии то, что линия есть длина без ширины. Рассмотрим дело следующим образом.

вернуться

301

Аристотель, фр. 29, изд. Розе. См. "Против физиков", I, 412. — 154.

вернуться

302

См. "Против физиков", 414 слл. — 155.

вернуться

303

"Против геометров", 26. — 156.