Выбрать главу

Следовательно, если нельзя помыслить тела ни до схождения этих [измерений], ни после их схождения, а кроме того, нельзя придумать ничего другого, то тела [просто] не существует. К тому же если не существует ни длины, ни ширины, ни глубины, то не будет и мыслимого по причастности им тела. Но действительно не существует ни длины, ни ширины, ни глубины, как мы доказали предыдущими рассуждениями [308]. Следовательно, не будет и тела, понимаемого как нечто причастное этим измерениям.

[7. ПРЯМАЯ]

Таким образом, начала геометрии оказываются лишенными всякой реальной основы. Но с их устранением не может существовать никакое другое геометрическое положение. Действительно, каково бы ни было это последнее, оно должно быть доказано на линиях [чертежей]. А мы показали [309], что никакой линии как родового понятия не существует. Из этого следует, что не существует и никакой линии в качестве вида, будет ли кто-нибудь предполагать ее в виде прямой, ломаной или имеющей какой-нибудь другой вид. Отсюда на этом, пожалуй, можно было бы и закончить наше возражение против геометров. Однако же, вступая снова в борьбу, мы попробуем показать, что, даже если мы оставим в стороне эти принципы геометрии, все равно геометры не могут ни составить, ни доказать никакой теоремы.

Однако и прежде того относительно их основных принципов можно сказать еще немало, как, например, относительно их положения, что прямая есть линия, одинаково расположенная всеми своими частями [310]. Действительно, если пройти мимо прочего, ясно [уже] то, что если не существует линии как рода, то не может существовать и прямой линии. Ведь подобно тому как при отсутствии живого существа не существует и человека, а при отсутствии человека не существует и Сократа, точно так же с устранением родовой линии должна устраниться и плоская прямая линия. Затем, и "одинаковое" высказывается в двух смыслах. В одном смысле оно есть то, что обладает одинаковой величиной, и не превосходит то, в отношении чего оно зовется одинаковым, не превосходится им, как, например, мы говорим, что палка длиной в один локоть одинакова с палкой в один локоть. В другом смысле это есть то, что обладает одинаково расположенными частями, т.е. равномерное. Так, например, мы называем почву ровной, вместо того чтобы назвать ее равномерной. Итак, если об одинаковом говорится в двух смыслах, то, когда геометры в целях определения прямой линии говорят: "Прямая линия есть та, которая одинаково расположена своими частями", — они пользуются "одинаковым" или в первом значении, или во втором. Но если в первом, то они поступают совершенно безрассудно, поскольку нет никакого смысла в том, чтобы прямая линия имела одинаковые величины своих частей и не превосходила их, и не была превосходима ими. Если же во втором смысле, то они должны будут вести доказательство при помощи того, что [только еще] исследуется, потому что существование прямой они устанавливают на основании того, что она имеет свои части расположенными равномерно и по прямой, а то, что нечто лежит на прямой, нельзя узнать без использования [уже готовой] прямой.

вернуться

308

См. "Против геометров", 86. — 161.

вернуться

309

"Против геометров", 37 слл. — 162.

вернуться

310

См. Евклид. Начала, I, опр. 4. — 162.