Еще нелепее рассуждают "те, кто дает такое определение: "Прямая линия есть та, которая одинаково обращается в своих собственных пределах" или такое: "...которая, обращаясь в своих собственных пределах, всеми своими частями касается плоскости". Во-первых, и эти определения подпадают под высказанные нами раньше апории. Затем, как это говорят и эпикурейцы [311], хотя прямая в пустоте есть прямая, по, однако, она здесь не вращается, потому что сама пустота не допускает движения ни цельного, ни по частям; что же касается второго определения, то оно, кроме того, впадает и во взаимодоказуемость [312]. А это дурнее всего. Именно, плоскость они определяют при помощи прямой, а прямую — при помощи плоскости, поскольку прямой является, по их мнению, та, которая касается всеми своими частями плоскости, а плоскость есть то, чего касается всеми своими частями проводимая прямая, так что для определения прямой надо сначала узнать плоскость, а чтобы узнать эту последнюю, необходимо предварительно знать прямую. Это — нелепо. И вообще тот, кто определяет прямую через плоскость, делает не что иное, как устанавливает прямую при помощи прямой же, поскольку, по их мнению, плоскость есть просто множество прямых.
[8. УГОЛ И КРУГ]
Но каково рассуждение относительно прямой, таковым же оно должно быть и относительно угла. Именно, опять-таки, когда они в целях определения утверждают, что угол есть "то наименьшее, что получается при взаимном наклонении двух прямых, не параллельных между собой" [313], то под "наименьшим" они понимают или лишенное частей тело, или то, что у них называется точкой. Однако лишенного частей тела они не могут иметь в виду, поскольку это последнее не может делиться даже па две части, в то время как угол, по их мнению, делится до бесконечности. И иначе: из углов один, по их мнению, больше, другой же — меньше. Но нет ничего меньше наименьшего тела, поскольку наименьшим является это последнее, а не [что-нибудь другое]. Следовательно, остается иметь в виду то, что они называют г точкой. А это и само относится к области апории.
Действительно, если точка, во всяком случае, везде является лишенной всяких промежутков, то угол не может быть подвергнут делению. Кроме того, угол не может быть больше или меньше, поскольку в том, что не обладает никаким размером, не может существовать и никакого различия по величине. И иначе: если точка попадает между прямыми, то она разделяет прямые; а то, что производит разделение, не может быть лишенным промежутков.
Но нет, некоторые из них имеют еще обыкновение называть углом "первое расстояние при наклонении [прямых]". Против них простое слово истины имеется [314].
А именно: указанное расстояние или не содержит в себе частей, или оно делимо. Но если оно не содержит в себе частей, то у них последуют выше высказанные апории. Если же оно делимо, то ни одно из разделенных не будет первым, поскольку, какую бы часть ни предположить первой, всегда можно найти другую, еще более первую вследствие признаваемого ими же самими деления [всего] существующего до бесконечности.
Я уж не говорю, что подобное определение углов противоречит их другому научному пониманию у геометров. Именно, производя разделение, они утверждают, что из углов один является прямым, другой — тупым, третий острым, причем среди тупых углов одни являются более тупыми, чем другие, и то же самое среди острых углов. Но если мы скажем, что углом является наименьшее расстояние при наклонении [прямых], то подобное различие углов не сохранится, поскольку они и превосходят друг друга и друг другом превосходятся. Или же, если они сохраняются, то уничтожится сам угол, поскольку он [в данном случае] не обладает устойчивой мерой, при помощи которой его можно было бы распознать.
Итак, вот что нужно сказать против них по поводу прямой линии и угла. Когда же с целью определения круга они говорят [315]: "круг есть плоская фигура, ограниченная одной линией, когда проведенные до нее от центра прямые равны между собой", — то это пустой разговор, поскольку если устранены и точка, и линия, и прямая, и также плоскость и угол, то не может быть мыслим и круг.