Выбрать главу

The investigation was carried out at Britain’s Royal Air Force Institute of Aviation Medicine in Farnborough, by the organization’s group captain, W K. Stewart, in conjunction with one Sir Harold E. Whittingham, director of medical services for the British Overseas Airways Corporation. As Sir Harold held the most degrees—five are listed on the published paper, not counting the knighthood—I will, out of respect, assume him to have been the team leader.

Sir Harold and his team were immediately struck by the uniformity of the corpses’ injuries. All twenty-one cadavers showed relatively few external wounds and quite severe internal injuries, particularly to the lungs. Three conditions were known to cause lung injuries such as those found in the Comet bodies: bomb blast, sudden decompression—as happens when pressurization of an airplane cabin fails—and a fall from extreme heights. Any one of them, in a crash like these, was a possibility.

So far, the dead weren’t doing much to clear up the mystery.

The bomb possibility was the first to be ruled out. None of the bodies were burned, none had been penetrated with bomb-generated shrapnel, and none had been, as Dennis Shanahan would put it, highly fragmented.

The insane, grudge-bearing, explosives-savvy former Comet employee theory quickly bit the dust.

Next the team considered sudden depressurization of the passenger cabin. Could this possibly cause such severe lung damage? To find out, the Farnborough team recruited a group of guinea pigs and exposed them to a sudden simulated pressure drop—from sea level to 35,000 feet.

To quote Sir Harold, “The guinea pigs appeared mildly startled by the experience but showed no signs of respiratory distress.” Data from other facilities, based on both animal experimentation and human experiences, showed similarly few deleterious effects—certainly not the kind of damage seen in the lungs of the Comet passengers.

This left our friend “extreme water impact” as the likely cause of death, and a high-altitude cabin breakup, presumably from some structural flaw, as the likely cause of the crash. As Richard Snyder wouldn’t write

“Fatal Injuries Resulting from Extreme Water Impact” for another fourteen years, the Farnborough team turned once again to guinea pigs.

Sir Harold wanted to find out exactly what happens to lungs that hit water at terminal velocity. When I first saw mention of the animals, I pictured Sir Harold trekking to the cliffs of Dover, rodent cages in tow, and hurling the unsuspecting creatures into the seas below, where his companions awaited in rowboats with nets. But Sir Harold had more sense than I; he and his men devised a “vertical catapult” to achieve the necessary forces in a far shorter distance. “The guinea pigs,” he wrote, “were lightly secured by strips of adhesive paper to the under surface of the carrier so that, when the latter was arrested to the lower limit of its excursion, the guinea pig was projected belly first, about 2½ feet through the air before hitting the water.” I know just the sort of little boy Sir Harold was.

To make a long story short, the catapulted guinea pigs’ lungs looked a lot like the Comet passengers’ lungs. The researchers concluded that the planes had broken apart at altitude, spilling most of their human contents into the sea. To figure out exactly where the fuselage had broken apart, they looked at whether the passengers had been clothed or naked when pulled from the sea. Sir Harold’s theory was that hitting the sea from a height of several miles would knock one’s clothes off, but that hitting the sea inside the largely intact tail of the plane would not, and that they could therefore surmise the point of breakup as the dividing line between clothed and naked cadavers. For in both flights, it was the passengers determined (by checking the seating chart) to have been in the back of the plane who wound up floating in their clothes, while passengers seated forward of a certain point were found floating naked, or practically so.

To prove his theory, Sir Harold lacked one key piece of data: Was it indeed true that hitting the sea after falling from an airplane would serve to knock one’s clothes off? Ever the pioneer, Sir Harold undertook the study himself. Though I would like nothing better than to be able to relate to you the details of another Farnborough guinea pig study, this one featuring the little rodents outfitted in tiny worsted suits and 1950s dresses, in point of fact no guinea pigs were used. The Royal Aircraft Establishment was enlisted to pilot a group of fully clothed dummies to cruising altitude and drop them into the sea.[19] As Sir Harold had expected, their clothes were indeed blown off on impact, a phenomenon verified by Marin County coroner Gary Erickson, the man who autopsies the bodies of Golden Gate Bridge suicides: Even after falling just 250 feet, he told me, “typically the shoes get blown off, the crotch gets blown out of the pants, one or both of the rear pockets are gone.”

In the end, enough of the Comet wreckage was recovered to verify Sir Harold’s theories. A structural failure had indeed caused both planes to break apart in midair. Hats off to Sir Harold and the guinea pigs of Farnborough.

Dennis and I are eating an early lunch at an Italian restaurant near the beach. We are the only customers, and it’s way too quiet for the conversation going on at our table. Whenever the waiter appears to refill our water glasses, I pause, as though we were discussing something top secret or desperately personal. Shanahan seems not to care. The waiter will be grinding pepper on my salad for what seems like a week, and Dennis is going, “…used a scallop trawler to recover some of the smaller remains…”

I ask Dennis how, knowing what he knows and seeing what he sees, he ever manages to board a plane. He points out that most crashing airplanes don’t hit the ground from thirty thousand feet. The vast majority crash on takeoff or landing, either on or near the ground.

Shanahan says 80 to 85 percent of plane crashes are potentially survivable.

The key word here is “potentially.” Meaning that if everything goes the way it went in the FAA-required cabin evacuation simulation, you’ll survive. Federal regulations require airplane manufacturers to be able to evacuate all passengers through half of a plane’s emergency exits within ninety seconds. Alas, in reality, evacuations rarely happen the way they do in simulations. “If you look at survivable crashes, it’s rare that even half the emergency exits open,” says Shanahan. “Plus, there’s a lot of panic and confusion.” Shanahan cites the example of a Delta crash in Dallas. “It should have been very survivable. There were very few traumatic injuries. But a lot of people were killed by the fire. They found them stacked up at the emergency exits. Couldn’t get them open.” Fire is the number one killer in airplane mishaps. It doesn’t take much of an impact to explode a fuel tank and set a plane on fire. Passengers die from inhaling searing-hot air and from toxic fumes released by burning upholstery or insulation. They die because their legs are broken from slamming into the seat in front of them and they can’t crawl to the exits.

They die because passengers don’t exit flaming planes in an orderly manner; they stampede and elbow and trample.[20]

Could airlines do a better job of making their planes fire-safe? You bet they could. They could install more emergency exits, but they won’t, because that means taking out seats and losing revenue. They could install sprinkler systems or build crash-worthy fuel systems of the type used on military helicopters. But they won’t, because both these options would add too much weight. More weight means higher fuel costs.

вернуться

19

You are perhaps wondering, as I did, whether cadavers were ever used to document the effects of accidental free falls on humans. The closest I came to a paper like this was J. C. Earley’s “Body Terminal Velocity,” dated 1964, and J. S. Cotner’s “Analysis of Air Resistance Effects on the Velocity of Falling Human Bodies,” from 1962, both, alas, unpublished. I do know that when J. C. Earley used dummies in a study, he used “Dummies” in the title, and so I suspect that a few donated corpses did indeed make the plunge for science.

вернуться

20

Here is the secret to surviving one of these crashes: Be male. In a 1970

Civil Aeromedical Institute study of three crashes involving emergency evacuations, the most prominent factor influencing survival was gender (followed closely by proximity to exit). Adult males were by far the most likely to get out alive. Why? Presumably because they pushed everyone else out of the way.