Выбрать главу

9(1 — p) + 8p > 10(1 — p) — 1000p, или p > 1 / 1009.

Таким образом, при наличии даже малейшей вероятности того, что выигрыши игрока Б противоположны выигрышам на рис. 5.4, игроку А лучше выбрать стратегию «вверх». В данном случае правильно выполненный анализ, основанный на рациональном поведении, не противоречит ни интуитивным догадкам, ни экспериментальным данным.

При выполнении этих вычислений мы исходили из предположения, что, столкнувшись с неопределенностью в отношении выигрышей, игрок А рассчитает их статистическое среднее значение в случае различных действий и выберет действие, обеспечивающее самое высокое среднестатистическое значение выигрыша. Это неявное допущение хотя и соответствует цели данного примера, но сопряжено с определенными проблемами. Например, оно подразумевает, что человек, столкнувшийся с двумя ситуациями, в одной из которых он выиграет или проиграет 10 долларов с вероятностью 50 на 50, а в другой выиграет 10 001 доллар и проиграет 10 000 долларов с той же вероятностью, должен выбрать вторую ситуацию, поскольку она обеспечивает среднестатистический выигрыш в размере 50 центов (1/2 × 10 001 — 1/2 × 10 000), тогда как первая принесет нулевой выигрыш (1/2 × 10 — 1/2 × 10). Однако многие сочли бы, что вторая ситуация гораздо рискованнее, а потому предпочли бы первую. Решить эту проблему достаточно легко. В приложении к главе 7 показано, как создание нелинейной шкалы выигрышей, соответствующих денежным суммам, позволяет человеку, принимающему решение, предусмотреть как риск, так и прибыль. А в главе 8 продемонстрировано, как можно использовать эту концепцию для того, чтобы понять, как люди реагируют на риск в своей жизни — например, разделяют его с другими или покупают страховку.

Б. Множественность равновесий Нэша

Еще одно критическое замечание в адрес концепции равновесия Нэша строится на наблюдении, что во многих играх присутствует множество равновесий Нэша, а значит, данная концепция неспособна определить исходы игры достаточно точно для того, чтобы давать однозначные прогнозы. Данный аргумент не требует от нас отказа от концепции равновесия Нэша, а скорее подразумевает, что при необходимости получить однозначный прогноз на основании нашей гипотезы мы должны включить некий критерий, который поможет нам решить, какое именно из множества равновесий Нэша выбрать.

В главе 4 мы изучили много координационных игр со множеством равновесий. Из всех этих равновесий игроки могут выбрать одно в качестве фокальной точки при наличии у них общих социальных, культурных или исторических знаний. Рассмотрим координационную игру, в которую сыграли студенты Стэнфордского университета. За одним игроком закрепили Бостон, за другим — Сан-Франциско. Затем каждому студенту вручили список из девяти американских городов (Атланта, Чикаго, Даллас, Денвер, Хьюстон, Лос-Анджелес, Нью-Йорк, Филадельфия и Сиэтл) и попросили выбрать подмножество городов. Оба делали выбор одновременно и независимо друг от друга и могли получить приз только при условии, что их выбор приведет к формированию двух непересекающихся подмножеств городов. Несмотря на наличие 512 других равновесий Нэша, если оба студента были американцами или гражданами США, довольно долго прожившими в стране, более чем в 80 процентах случаев они выбирали единственное равновесие по географическому принципу. Студент, за которым был закреплен Бостон, указывал все города к востоку от Миссисипи, а студент, которому соответствовал Сан-Франциско, — все города к западу от Миссисипи. Вероятность такой координации существенно снижалась, когда один или оба студента не были гражданами США. Тогда выбор порой делался в алфавитном порядке, но с гораздо меньшим уровнем координации по той же точке раздела[64].

Характеристики самой игры в сочетании с общим культурным опытом могут способствовать сходимости ожиданий. В качестве еще одного примера множественности равновесий рассмотрим игру, в которой два игрока одновременно и независимо друг от друга записывают, какую долю от 100 долларов каждый из них хотел бы получить. Если сумма указанных ими чисел не превышает 100 долларов, каждый игрок получает то, что записал, если превышает, оба ничего не получают. Равновесие Нэша наблюдается в случае, если при любом значении x один игрок напишет x, а другой — (100 — x). Следовательно, в этой игре есть практически бесконечный диапазон равновесий Нэша. Однако на практике фокальной точкой чаще всего становится вариант 50 на 50. Данная социальная норма равенства или справедливости, кажется, насколько глубоко укоренилась, что стала почти инстинктивной: игроки, выбирающие 50 долларов, утверждают, что это очевидный ответ. Для того чтобы это действительно была фокальная точка, это не только должно быть очевидно для всех, но каждый должен знать, что это очевидно для всех, и все должны знать, что… Иными словами, такая очевидность должна быть общим знанием. Но так бывает далеко не всегда, что подтверждает ситуация, в которой один игрок — женщина из просвещенного, эгалитарного общества, считающая очевидным разделение 50 на 50, а другой — мужчина из патриархального общества, убежденный, что о каком бы дележе ни шла речь, мужчина должен получить в три раза больше женщины. В этом случае оба сделают то, что очевидно для нее и для него, и останутся ни с чем, поскольку очевидное решение для каждого из них не будет очевидным в качестве общего знания для обоих.

вернуться

64

См. David Kreps, A Course in Microeconomic Theory (Princeton: Princeton University Press, 1990), pp. 392–93, 414–15.