Теперь предположим, что у нас есть состояние |ψ0>, которое при операции инверсии переходит в еiδ|ψ0>, т. е.
(15.16)
Сделаем теперь новую инверсию. После двух инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться
Но
Отсюда следует, что (еiδ)2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то у δ могут быть только две возможности:
а это означает, что или
(15.17)
В классической физике, если состояние симметрично относительно инверсии, то эта операция дает опять то же состояние. А в квантовой механике имеются две возможности: получается либо то же состояние, либо минус то же состояние. Когда получается то же состояние, ^P|ψ0>=|ψ0>, мы говорим, что у состояния |ψ0> четность положительна. Если знак меняется, так что ^P|ψ0>=-|ψ0>, мы говорим, что четность состояния отрицательна. (Оператор инверсии ^P известен также как оператор четности.) Состояние |I> иона Н2+ обладает положительной четностью; состояние же |II> — отрицательной [см. (15.12)]. Бывают, конечно, состояния, не симметричные относительно операции ^P; это состояния без определенной четности. Например, в системе Н2+ состояние |I> имеет положительную четность, состояние |II> — отрицательную, а состояние |1> определенной четности не имеет.
Когда мы говорим о том, что операция (например, инверсия) была совершена «над физической системой», то это можно представлять себе двояким образом. Можно считать, что все, что было в точке r, физически сдвинулось в обратную точку -r; или можно считать, что мы смотрим на ту же систему из новой системы отсчета х', y', z', связанной со старой формулами х'=-х, у'=-у и z'=-z. Точно так же, когда мы говорим о поворотах, то можно либо считать, что мы поворачиваем целиком всю физическую систему, либо что поворачиваем систему координат, в которой мы измеряем нашу систему, оставляя последнюю закрепленной в пространстве. Эти две точки зрения по существу равноценны. Они равноценны и при повороте, только поворот системы на угол θ подобен повороту системы отсчета на отрицательный угол —θ. В нашем курсе мы обычно смотрели, что получается, когда берется проекция на новую систему осей. То, что при этом получается, совпадает с тем, что получится, если мы оставим оси прежними и повернем тело на столько же назад. Когда вы это делаете, не забудьте поменять знаки углов[60].
Многие законы физики (но не все) не меняются при отражении или инверсии координат. Они симметричны по отношению к инверсии. Законы электродинамики, например, не изменяются, если мы меняем x на -х, у на -у и z на -z во всех уравнениях. То же относится и к законам тяжести, и к сильным взаимодействиям ядерной физики. Только у слабых взаимодействий, ответственных за β-распад, нет такой симметрии. [Мы обсуждали это несколько подробнее в гл. 52 (вып. 4).] Но мы сейчас пренебрежем β-распадом. Тогда в любой физической системе, на которую, как можно думать, β-распад не оказывает заметного влияния (в качестве примера возьмем испускание света атомом), гамильтониан ^H и оператор ^P будут коммутировать. В этих обстоятельствах верно следующее утверждение. Если четность состояния вначале положительна и вы поинтересуетесь физической ситуацией через некоторое время, то увидите, что четность останется положительной. Пусть, например, нам известно, что атом перед тем, как испустить фотон, находился в состоянии с положительной четностью. Вы рассматриваете всю эту систему (включая фотон) после испускания; четность опять будет положительна (и точно так же было бы, если бы вы начали с отрицательной четности). Этот принцип именуется сохранением четности. Вы теперь понимаете, почему слова «сохранение четности» и «симметрия относительно отражений» в квантовой механике тесно переплетены. Хотя до последних лет считалось, что природа всегда сохраняет четность, теперь известно, что это не так. Выяснилось, что это неверно, потому что реакция β-распада не обладает симметрией относительно инверсии, обнаруженной в других законах физики.
60
В других книгах вы можете встретить формулы с другими знаками; вероятнее всего, в них используются углы, определенные по-иному.