(16.30)
Эта четверка состояний сведена в табл. 16.1.
Таблица 16.1. СВОДКА СОСТОЯНИЙ
Все, что нам теперь нужно сделать, это взять каждое состояние, повернуть его вокруг оси у и посмотреть, сколько новых состояний оно создаст — пользуясь известной нам матрицей поворота для частицы спина 1/2. Можно поступать так же, как мы это делали в случае спина 1 [см. гл. 10, § 6 (вып. 8)]. (Только алгебры будет побольше.) Мы будем строго следовать идеям гл. 10 (вып. 8), так что подробных объяснений давать не будем. Состояния в системе S будут обозначаться
и т. д.; T-системой будет считаться система, повернутая вокруг оси у системы S на угол θ. Состояния в T-системе будут обозначаться |3/2, +3/2, T>, |3/2, +1/2, T> и т. д. Ясно, что |3/2, +3/2, T> это то же самое, что |+'+'+'> (штрихи всегда относятся к T-системе). Точно так же |3/2, +1/2, T> будет равняться
и т. д. Каждое |+'>-состояние в T-системе получается как из |+>-, так и из |->-состояний в системе S с помощью матричных элементов из табл. 10.4 (вып. 8).
Если мы имеем тройку частиц со спином 1/2, то (10.47) надо заменить на
(16.31)
Пользуясь обозначениями табл. 10.4, получим вместо (10.48) уравнение
(16.32)
Это уже дает нам некоторые из наших матричных элементов <jT| iS>. Чтобы получить выражение для |3/2, +1/2, S>, мы должны исходить из преобразования состояния с двумя плюсами и одним минусом. К примеру,
(16.33)
Добавляя два сходных выражения для |+—+> и |—++> и деля на √3, найдем
(16.34)
Продолжая этот процесс, мы найдем все элементы <jT|iS> матрицы преобразования. Они приведены в табл. 16.2. Первый столбец получается из (16.32), второй — из (16.34). Последние два столбца были вычислены таким же способом.
Теперь допустим, что T-система была повернута относительно S-системы на угол θ вокруг ее оси у. Тогда а, b, с и d равны [см. (10.54), вып. 8]: а=d=cosθ/2, с=-b=sinθ/2. Подставляя это в табл. 16.2, получаем формулы, похожие на вторую половину табл. 15.2, но на этот раз для системы со спином 3/2.
Таблица 16.2. МАТРИЦА ПОВОРОТА ДЛЯ ЧАСТИЦЫ СО СПИНОМ 3/2
Коэффициенты а, b, с и d объясняются в табл. 10.4.
Рассуждения, которые мы только что провели, были обобщены на систему с произвольным спином j. Состояния |j, m> можно составить из 2j частиц со спином 1/2 у каждой. (Из них j+m будут в |+>-состоянии, а j-m будут в |->-состоянии.) Проводится суммирование по всем возможным способам, какими их можно сочетать, а затем состояния нормируются умножением на надлежащую постоянную. Если у вас есть способности к математике, то вы сможете доказать, что получается следующий результат[75]:
(16.35)
где k пробегает все те значения, при которых под знаком факториала получаются неотрицательные величины.
Это очень запутанная формула, но с ее помощью вы сможете проверить табл. 15.2 для j=1 и составить ваши собственные таблицы для больших j. Некоторые матричные элементы очень важны и получили особые наименования. Например, матричные элементы для m=m'=0 и целых j известны под названием полиномов Лежандра и обозначаются
(16.36)
Первые из них таковы:
(16.37)
(16.38)
(16.39)
(16.40)
§ 5. Измерение ядерного спина
Продемонстрируем теперь пример, где понадобятся только что описанные коэффициенты. Он связан с проделанными не так давно интересными опытами, которые вы теперь в состоянии будете понять. Некоторым физикам захотелось узнать спин одного из возбужденных состояний ядра Ne20. Для этого они принялись бомбить углеродную мишень пучком ускоренных ионов углерода и породили нужное им возбужденное состояние Ne20 (обозначаемое Ne20*) в реакции
где α1 — это α-частица, или Не4. Кое-какие из создаваемых таким образом возбужденных состояний Ne20 неустойчивы и распадаются таким путем: