Пусть из jа и jb меньшим является jb (а если они одинаковы, возьмите любое из них); тогда понадобятся только 2jb значений полного спина J, идущих единичными шагами от jа+jb вниз к jа-jb. Иначе говоря, когда объединяются два объекта со спинами jа и jb, то полный момент количества движения J их системы может равняться одному из значений:
(16.58)
(Написав |ja-jb| вместо ja-jb, мы можем избежать напоминания о том, что ja≥jb.)
Для каждого из этих значений J имеется 2J+1 состояний с различными значениями М; М меняется от +J до -J. Каждое из них образовано из линейных комбинаций исходных состояний |а, mа; b, mb> с соответствующими коэффициентами — коэффициентами Клебша—Гордона для каждого отдельного члена. Можно считать, что эти коэффициенты дают «количество» состояния |ja, ma; jb, mb>, проявляющегося в состоянии |J,M>. Так что каждый из коэффициентов Клебша—Гордона обладает, если угодно, шестью индексами, указывающими его положение в формулах типа приведенных в табл. 16.3 и 16.6. Иначе говоря, обозначая, скажем, эти коэффициенты С (J, М; ja, ma; jb, mb), можно выразить равенство во второй строчке табл. 16.6 так:
Мы не будем здесь подсчитывать коэффициенты для других частных случаев[77]. Но вы обнаружите такие таблицы во многих книжках. Попробуйте сами подсчитать другой случай, например объединение двух объектов со спином 1. Мы же просто привели в табл. 16.7 окончательный результат.
Таблица 16.7. ОБЪЕДИНЕНИЕ ДВУХ ЧАСТИЦ СО СПИНОМ 1 (ja=1, jb=1)
Эти законы объединения моментов количества движения имеют очень важное значение в физике частиц, их приложениям поистине нет конца. К сожалению, у нас нет сейчас больше времени на другие примеры.
Добавление 1. Вывод матрицы поворота[78]
Для тех, кто хотел бы разобраться в этом поподробнее, мы вычислим сейчас общую матрицу поворота для системы со спином (полным моментом количества движения) j. В расчете общего случая на самом деле большой необходимости нет; важно понять идею, а все результаты вы сможете найти в таблицах, которые приводятся во многих книжках. Но, с другой стороны, вы зашли уже так далеко, что у вас, естественно, может возникнуть желание убедиться, что вы и впрямь в состоянии понять даже столь сложные формулы квантовой механики, как (16.35).
Расширим рассуждения § 4 на систему со спином j, которую будем считать составленной из 2j объектов со спином 1/2. Состояние с m=j имело бы вид |+ + + ... +> (с j плюсами). Для m=j-1 было бы 2j членов типа |+ + ... + + ->, |+ + ... +- +> и т. д. Рассмотрим общий случай, когда имеется r плюсов и s минусов, причем r+s=2j. При повороте вокруг оси z от каждого из r плюсов появится множитель e+iφ/2. В итоге фаза изменится на i(r/2-s/2)φ. Мы видим, что
(16.59)
Как и в случае J=3/2, каждое состояние с определенным m должно быть суммой всех состояний с одними и теми же r и s, взятых со знаком плюс, т. е. состояний, отвечающих всевозможным перестановкам с r плюсами и s минусами. Мы считаем, что вам известно, что всего таких сочетаний есть (r+s)!/r!s!. Чтобы нормировать каждое состояние, надо эту сумму разделить на корень квадратный из этого числа. Можно написать
77
Тем более, что большая часть работы уже проделана, раз у нас есть общая матрица поворота (16.35).
78
Первоначально материал этого добавления входил в текст лекции, но потом мы поняли, что не стоит включать в нее такое подробное изложение общего случая.