История этой идеи тоже интересна. С разницей в несколько месяцев в 1926 г. Гейзенберг и Шредингер независимо отыскали правильные законы, описывающие атомную механику. Шредингер изобрел свою волновую функцию ψ(х) и нашел уравнение для нее, а Гейзенберг обнаружил, что природу можно было бы описывать и классическими уравнениями, лишь бы хр-рх было равно ℏ/i, чего можно было добиться, определив их с помощью особого вида матриц. На нашем теперешнем языке он пользовался энергетическим представлением и его матрицами. И то и другое — и матричная алгебра Гейзенберга и дифференциальное уравнение Шредингера — объясняли атом водорода. Несколькими месяцами позднее Шредингер смог показать, что обе теории эквивалентны — мы только что это видели. Но две разные математические формы квантовой механики были открыты независимо.
Глава 19 УРАВНЕНИЕ ШРЕДИНГЕРА В КЛАССИЧЕСКОМ КОНТЕКСТЕ. СЕМИНАР ПО СВЕРХПРОВОДИМОСТИ
§ 1. Уравнение Шредингера в магнитном поле
Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людьми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться результаты расчетов. А вы должны понимать, что вовсе не обязательно во всем немедленно и до конца разбираться, надо только верить, что если проделать все выкладки, то все так и получится.
Но это не все. Главное — что об этом мне хочется говорить. Это такая свежая, актуальная, современная тема, что вполне законно вынести ее на семинар. Тема эта — классический аспект уравнения Шредингера, явление сверхпроводимости.
Обычно та волновая функция, которая появляется в уравнении Шредингера, относится только к одной или к двум частицам. И сама волновая функция классическим смыслом не обладает в отличие от электрического поля, или векторного потенциала, или других подобных вещей. Правда, волновая функция отдельной частицы — это «поле» в том смысле, что она есть функция положения, но классического значения она, вообще говоря, не имеет. Тем не менее бывают иногда обстоятельства, в которых квантовомеханическая волновая функция действительно имеет классическое значение, именно их я и хочу коснуться. Своеобразие квантовомеханического поведения вещества в мелких масштабах обычно не дает себя чувствовать в крупномасштабных явлениях, если не считать стандартных выводов о том, что оно вызывает к жизни законы Ньютона, законы так называемой классической механики. Но существуют порой обстоятельства, в которых особенности квантовой механики могут особым образом сказаться в крупномасштабных явлениях.
При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состояний в игру включается только очень-очень малое количество состояний — тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопическом уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эффектами — не обычное обсуждение пути, по которому квантовая механика в среднем воспроизводится ньютоновой механикой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.
Начну с того, что напомню вам кое-какие свойства уравнения Шредингера[87]. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явления сверхпроводимости связаны с магнитными полями. Внешнее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала, очень прост.
87
Фактически это не напоминание, потому что некоторые из этих уравнений я раньше не приводил; не забудьте, что я веду настоящий семинар.