Если два фильтра стоят друг за другом (как на фиг. 3.4), мы и символы будем ставить друг за другом:
(3.3)
При таком расположении все, что прошло через первый фильтр, пройдет и через второй. В самом деле, даже если мы перекроем каналы «нуль» и «минус» второго прибора, так что будет
(3.4)
все равно прохождение через второй прибор будет 100%-ным. Но если имеется
(3.5)
то из дальнего конца не выйдет ничего. Равным образом ничего не выйдет и при
(3.6)
С другой стороны,
(3.7)
было бы просто эквивалентно одному только
Теперь мы хотим описать эти опыты квантовомеханически. Мы скажем, что атом находится в состоянии (+S), если он прошел через прибор, изображенный на фиг. 3.5,б, что он находится в состоянии (0S), если прошёл сквозь прибор на фиг. 3.5, в, и что он находится в состоянии (-S), если прошел сквозь прибор на фиг. 3.5, г[5]. Затем пусть <b|a> будет амплитуда того, что атом, который находится в состоянии а, пройдя через прибор, окажется в состоянии b. Можно сказать <b|а> есть амплитуда для атома в состоянии а перейти в состояние b. Опыт (3.4) означает, что
а (3.5) — что
Точно так же и результат (3.6) означает, что
а (3.7)— что
Пока мы имеем дело только с «чистыми» состояниями, т. е. пока бывает открыт только один канал, таких амплитуд — всего девять. Их можно перечислить в следующей таблице:
(3.8)
Эта совокупность девяти чисел, именуемая матрицей, подытоживает описанные нами явления.
§ 2. Опыты с профильтрованными атомами
Теперь возникает важный вопрос: что будет, если второй прибор наклонить под некоторым углом, так чтобы ось его поля больше не была параллельной оси первого? Его можно не только наклонить, но и направить в другую сторону, например повернуть пучок поперек. Вначале для простоты возьмем такое расположение, при котором второй прибор Штерна—Герлаха повернут вокруг оси у на угол α (фиг. 3.6).
Фиг. 3.6. Два последовательно соединенных фильтра типа Штерна—Герлаха. Второй повернут, относительно первого на угол α.
Такой прибор мы обозначим буквой Т. Пусть мы теперь предприняли следующий опыт:
или такой опыт:
Что в этих случаях выйдет из дальнего конца?
Ответ таков. Если атомы по отношению к S находятся в определенном состоянии, то по отношению к Т они не находятся в том же состоянии, состояние (+S) не является также и состоянием (+T). Однако имеется определенная амплитуда обнаружить атом в состоянии (+Т), или в состоянии (0Т), или в состоянии (-Т).
Иными словами, как бы досконально мы ни убедились, что наши атомы находятся в определенном состоянии, факт остается фактом, что, когда такой атом проходит через прибор, наклоненный под другим углом, он вынужден, так сказать, «переориентироваться» (что происходит, не забывайте, по законам случая). Если пропускать в каждый момент по одной частице, то вопрос можно будет ставить только таким образом: какова вероятность того, что она пройдет насквозь? Некоторые прошедшие сквозь S атомы очутятся в конце в состоянии (+Т), другие — в состоянии (0Т), третьи — в состоянии (-Т), и каждому состоянию отвечает своя вероятность. Эти вероятности можно вычислить, зная квадраты модулей комплексных амплитуд; нам нужен математический метод для этих амплитуд, их квантовомеханическое описание. Нам нужно знать, чему равны различные величины типа
под этими выражениями мы подразумеваем амплитуду того, что атом, первоначально бывший в состоянии (+S), может перейти в состояние (-Т) (что не равно нулю, если только S и T не параллельны друг другу). Имеются и другие амплитуды, например
Таких амплитуд на самом деле девять — это тоже матрица, и теория должна сообщить нам, как их вычислять. Подобно тому как F=ma сообщает нам, как подсчитать, что бывает в любых обстоятельствах с классической частицей, точно так же и законы квантовой механики позволяют нам определять амплитуду того, что частица пройдет через такой-то прибор. Центральный вопрос тогда заключается в том, как сосчитать для каждого данного угла α или вообще для какой угодно ориентации девять амплитуд: