Выбрать главу

Начнем с фильтра +S и обозначим количество прошедших сквозь него атомов буквой N. Если мы вслед за этим поставим фильтр 0Т, то число атомов, которое выйдет из фильтра, окажется некоторой частью от первоначального их количества, скажем αN. Если мы затем поставим второй фильтр +S, то до конца дойдет лишь часть β атомов. Это можно записать следующим образом:

(3.14)

Если наш третий прибор S' выделяет другое состояние, скажем (0S), то через него пройдет другая часть атомов, скажем γ[7]. Мы будем иметь

(3.15)

Теперь предположим, что мы повторили оба эти опыта, убрав из Т все перегородки. Тогда мы получим следующий замечательный результат:

(3.16)

(3.17)

В первом случае через S' прошли все атомы, во втором — ни одного! Это один из самых великих законов квантовой механики. То, что природа действует таким образом, вовсе не самоочевидно; результаты, которые мы привели, отвечают в нашем идеализированном случае квантовомеханическому поведению, наблюдавшемуся в бесчисленных экспериментах.

§ 5. Интерферирующие амплитуды

Как же это может быть, что, когда переходят от (3.15) к (3.17), т. е. когда открывается больше каналов, через фильтры начинает проходить меньше атомов? Это и есть старый, глубокий секрет квантовой механики — интерференция амплитуд. С такого рода парадоксом мы впервые встретились в интерференционном опыте, когда электроны проходили через две щели. Помните, мы тогда увидели, что временами кое-где получается меньше электронов, когда обе щели открыты, чем когда открыта одна. Численно это получается вот как. Можно написать амплитуду того, что атом пройдет в приборе (3.17) через Т и S' в виде суммы трех амплитуд — по одной для каждого из трех пучков в Т; эта сумма равна нулю:

(3.18)

Ни одна из трех отдельных амплитуд не равна нулю: например, квадрат модуля второй амплитуды есть γα [см. (3.15)], но их сумма есть нуль. Тот же ответ получился бы, если бы мы настроили S' на то, чтобы отбирать состояние (-S). Однако при расположении (3.16) ответ уже другой. Если обозначить амплитуду прохождения через Т и S' буквой а, то в этом случае мы будем иметь[8]

(3.19)

В опыте (3.16) пучок сперва расщеплялся, а потом восстанавливался. Как мы видим, Шалтая-Болтая удалось собрать обратно. Информация о первоначальном состоянии (+S) сохранилась — все выглядит так, как если бы прибора Т вовсе не было. И это будет верно, что бы ни поставили за «до отказа раскрытым» прибором Т. Можно поставить за ним фильтр R — под каким-нибудь необычным углом — или что-угодно. Ответ будет всегда одинаков, как будто атомы шли в S' прямо из первого фильтра S.

Итак, мы пришли к важному принципу: фильтр Т или любой другой с открытыми до отказа заслонками не приводит ни к каким изменениям. Надо только упомянуть одно добавочное условие. Открытый фильтр должен не только пропускать все три пучка, но и не вызывать в них неодинаковых возмущений. Например, в нем не должно быть сильного электрического поля близ одного из пучков, которого не было бы возле других. Причина заключается вот в чем: хотя это добавочное возмущение может и не помешать всем атомам пройти сквозь фильтр, оно может привести к изменению фаз некоторых амплитуд. Тогда интерференция стала бы не такой, как была, и амплитуды (3.18) и (3.19) стали бы другими. Мы всегда будем предполагать, что таких добавочных возмущений нет.

Перепишем (3.18) и (3.19) в улучшенных обозначениях. Пусть i обозначает любое из трех состояний (+Т), (0Т) и (-Т); тогда уравнения можно написать так:

(3.20)

и

(3.21)

Точно так же в опыте, в котором S' заменяется совершенно произвольным фильтром R, мы имеем

(3.22)

Результаты будут всегда такими же, как если бы прибор Т убрали и осталось бы только

Или на математическом языке

(3.23)

Это и есть наш основной закон, и он справедлив всегда, если только i обозначает три базисных состояния любого фильтра.

вернуться

7

На языке наших прежних обозначений α=|<0T|+S>|2, β=|<+S|0T>|2, γ=|<0S|0T>|2.

вернуться

8

Из этого опыта мы на самом деле не можем заключить, что а=1, а видим только, что |а|2=1, следовательно, а может быть e, но можно показать, что при выборе δ=0 мы ничего существенного здесь не потеряли.