Заметьте, что в опыте (3.22) никакой особой связи между S, R и Т не было. Более того, рассуждения остались бы теми же независимо от того, какие состояния эти фильтры отбирают. Чтобы написать уравнение в общем виде без ссылок на какие-то особые состояния, отбираемые приборами S и R, обозначим через φ состояние, приготовляемое первым прибором (в нашем частном примере +S), и через χ — состояние, подвергаемое испытанию в конечном фильтре (в нашем примере +R). Тогда мы можем сформулировать наш основной закон (3.23) так:
(3.24)
где i должно пробегать по всем трем базисным состояниям некоторого определенного фильтра.
Хочется опять подчеркнуть, что мы понимаем под базисными состояниями. Они напоминают тройку состояний, которые можно отобрать с помощью одного из наших приборов Штерна—Герлаха. Одно условие состоит в том, что если у вас есть базисное состояние, то будущее не зависит от прошлого. Другое условие — что если у вас есть полная совокупность базисных состояний, то формула (3.24) справедлива для любой совокупности начальных и конечных состояний φ и χ. Но не существует никакой особой совокупности базисных состояний. Мы начали с рассмотрения базисных состояний по отношению к прибору Т. В равной мере мы бы могли рассмотреть другую совокупность базисных состояний — по отношению к прибору S, к прибору R и т. д[9]. Мы обычно говорим о базисных состояниях «в каком-то представлении».
Другое требование к совокупности базисных состояний (в том или ином частном представлении) заключается в том, что им положено полностью отличаться друг от друга. Под этим мы понимаем, что если имеется состояние (+T), то для него нет амплитуды перейти в состояние (0 Т) или (-Т). Если i и j обозначают два базисных состояния в некотором представлении, то общие правила, которые мы обсуждали в связи с (3.8), говорят, что
для любых неравных между собой i и j. Конечно, мы знаем, что
Эти два уравнения обычно пишут так:
(3.25)
где δij («символ Кронекера») — символ, равный по определению нулю при i≠j и единице при i=j.
Уравнение (3.25) не независимо от остальных законов, о которых мы упоминали. Бывает, что нас не особенно интересует математическая задача поиска наименьшей совокупности независимых аксиом, из которых все законы проистекут как следствия. Нам вполне достаточно обладать совокупностью, которая полна и по виду непротиворечива. Однако мы беремся показать, что (3.25) и (3.24) не независимы. Пусть φ в (3.24) представляет одно из базисных состояний той же совокупности, что и i, скажем j-e состояние; тогда мы имеем
Но (3.25) утверждает, что <i|j> равно нулю, если только i не равно j, так что сумма обращается просто в <χ|j> и получается тождество, что говорит о том, что эти два закона не независимы.
Можно видеть, что если справедливы оба уравнения (3.25) и (3.24), то между амплитудами должно существовать еще одно соотношение. Уравнение (3.10) имело вид
Если теперь посмотреть на (3.24) и предположить, что и φ, и χ — это состояние (+S), то слева получится <+S|+S>, а это, конечно, равно единице, и мы должны получить (3.19)
Эти два уравнения согласуются друг с другом (для всех относительных ориентации приборов Т и S) только тогда, когда
Стало быть, для любых состояний φ и χ
(3.26)
Если бы этого не было, вероятности «не сохранились бы» и частицы «терялись бы».
Прежде чем идти дальше, соберем все три общих закона для амплитуд, т. е. (3.24) —(3.26):
(3.27)
В этих уравнениях i и j относятся ко всем базисным состояниям какого-то одного представления, тогда как φ и χ — это любое возможное состояние атома. Важно отметить, что закон II справедлив лишь тогда, когда суммирование проводится по всем базисным состояниям системы (в нашем случае по трем: +Т, 0Т, -Т). Эти законы ничего не говорят о том, что следует избирать в качестве базиса. Мы начали с прибора Т, который является опытом Штерна—Герлаха с какой-то произвольной ориентацией, но и всякая другая ориентация, скажем W, тоже подошла бы. Вместо i и j нам пришлось бы ставить другую совокупность базисных состояний, но все законы остались бы правильными; какой-то единственной совокупности не существует. Успех в квантовой механике часто определяется тем, умеете ли вы использовать тот факт, помня, что расчет можно вести из-за этого разными путями.
9
И в самом деле, для атомных систем с тремя или более базисными состояниями существуют другие типы фильтров (совершенно непохожие на приборы Штерна —Герлаха), которые можно было бы употребить для выбора других совокупностей базисных состояний (но при том же общем иx числе).