Вам может захотеться увидать, как действуют квантовомеханические преобразования, и самим попробовать их проделать; для этого мы приведем здесь без вывода матрицы преобразований амплитуд спина 1 от представления S к другому представлению Т для разных взаимных ориентации фильтров S и Т. (В следующих главах мы покажем, как получаются эти результаты.)
Первый случай. У прибора Т ось у (вдоль которой движутся частицы) та же самая, что и у S, но Т повернут вокруг общей оси у на угол α (на фиг. 3.6). (Чтобы быть точными, укажем, что в приборе Т установлена система координат х', у', z', связанная с координатами х, у, z прибора S формулами z'=zcosα+хsinα; х'=хcosα-zsinα; у'=у.) Тогда амплитуды преобразований таковы:
(3.38)
Второй случай. Прибор Т имеет ту же ось z, что и S, но повернут относительно оси z на угол β. (Преобразование координат: z'=z; х'=xcosβ+ysinβ; у'=уcosβ-хsinβ.) Тогда амплитуды преобразований суть
(3.39)
Заметьте, что любые вращения Т можно составить из описанных двух вращений.
Если состояние φ определяется тремя числами
(3.40)
и если то же состояние описывается с точки зрения Т тремя числами
(3.41)
тогда коэффициенты <jT|iS> из (3.38) и (3.39) дают преобразования, связывающие Сi и С'i. Иными словами. Сi очень походят на компоненты вектора, который с точек зрения S и Т выглядит по-разному.
Только у частицы со спином 1 (потому что ей требуются как раз три амплитуды) есть такое тесное соответствие с векторами. Здесь во всех случаях имеется тройка чисел, которая обязана преобразовываться при изменениях координат определенным известным образом. И действительно, здесь есть и такая совокупность базисных состояний, которая преобразуется в точности, как три компоненты вектора. Три комбинации
(3.42)
преобразуются в С'х, С'у, С'z как раз так же, как х, у, z преобразуются в х', у', z'. [Вы можете проверить это с помощью законов преобразований (3.38) и (3.39).] Теперь вы понимаете, почему частицу со спином 1 часто называют «векторной частицей».
§ 8. Другие случаи
Мы начали с того, что подчеркнули, что наши рассуждения о частице со спином 1 явятся прототипом любых квантовомеханических задач. Обобщения требует только количество состояний. Вместо тройки базисных состояний в других случаях может потребоваться n базисных состояний[10]. Форма наших основных законов (3.27) останется той же, если только понимать, что i и j должны пробегать по всем n базисным состояниям. Любое явление можно проанализировать, задав амплитуды того, что оно начинается с любого базисного состояния и кончается тоже в любом базисном состоянии, а затем просуммировав по всей полной системе базисных состояний. Можно использовать любую подходящую систему базисных состояний, и каждый вправе выбрать ту, которая ему по душе; связь между любой парой базисов осуществляется матрицей преобразований n×n. Позже мы подробнее расскажем об этих преобразованиях.
Наконец, мы пообещали рассказать о том, что надо делать, если атомы прямо из печи проходят через какой-то прибор А и затем анализируются фильтром, который отбирает состояние χ. Вы не знаете, каково то состояние φ, в котором они входят в прибор. Лучше всего, наверное, было бы, если бы вы, не думая пока об этой проблеме, занимались такими задачами, в которых вначале имеются только чистые состояния. Но если уж вы на этом настаиваете, так вот как расправляются с этой проблемой.
10
Число базисных состояний