Выбрать главу

Теперь надо узнать закон, связывающий λ с углом между S и Т. Для одного случая ответ известен. Если угол — нуль, то и λ — нуль. Теперь предположим, что фазовый сдвиг λ есть непрерывная функция угла φ между S и Т (см. фиг. 4.4) при φ, стремящемся к нулю. По-видимому, это единственное разумное допущение. Иными словами, если свернуть Т с прямой линии S на малый угол ε, то и λ тоже будет малым числом, скажем mε, где m — некоторый коэффициент. Мы пишем mε, потому что можем доказать, что λ обязано быть пропорционально ε. Если бы мы поставили за T новый прибор Т, тоже образующий с Т угол ε, а с S тем самым образующий угол 2ε, то по отношению к Т мы бы имели

а по отношению к T'

Но мы знаем, что должны были бы получить тот же результат если бы сразу за S поставили Т'! Значит, когда угол удваивается, то удваивается и фаза. Эти аргументы мы можем, естественно, обобщить и построить любой поворот из последовательных бесконечно малых поворотов. Мы заключаем, что λ пропорционально φ для любого угла φ. Поэтому всегда можно писать λ=mφ.

Общий полученный нами результат состоит, следовательно, в том, что для Т, повернутого вокруг оси z относительно S на угол φ,

(4.17)

Для угла φ и для всех поворотов, которые встретятся нам в будущем, мы условимся считать, что положительным поворотом будет поворот правого винта, который ввинчивается в положительном направлении z.

Теперь остается узнать, каким должно быть m. Попробуем сперва следующее рассуждение: пусть Т повернулся на 360°; ясно, что тогда он опять очутится под нулем градусов, и мы должны будем иметь С'+=С+ и С'-=С-, или, что то же самое, eim=1. Мы получаем m=1. Это рассуждение не годится!

Чтобы убедиться в этом, допустим, что Т повернут на 180°. Если бы m было равно единице, мы получили бы C'+=eiπC+=-C+ и C'-=e-iπC-=-C-. Но это просто опять получилось первоначальное состояние. Обе амплитуды попросту умножены на -1; это возвращает нас к исходной физической системе. (Опять случай всеобщей перемены фаз.) Это означает, что если угол между Т и S на фиг. 4.5, б увеличивается на 180°, то система (по отношению к Т) оказывается неотличимой от случая 0° и частицы должны опять проходить через состояние (+) прибора U. Но при 180° состояние (+) прибора U — это состояние (-х) начального прибора S. Так что состояние (+x) станет состоянием (-х). Но мы-то ведь ничего не делали для изменения начального состояния; ответ поэтому ошибочен. Не может быть, чтобы m=1.

Нет, все должно быть иначе: надо, чтобы только поворот на 360° (и ни на какие меньшие углы) воспроизводил то же самое физическое состояние. Это случится при m=1/2. Тогда и только тогда первым углом, воспроизводящим то же самое физическое состояние, будет угол φ=360°[13]. При этом будет

(4.18)

Очень курьезно вдруг обнаружить, что поворот прибора на 360° приводит к новым амплитудам. Но на самом деле они не новы, потому что одновременная перемена знака ни к какой новой физике не приводит. Если кто-нибудь задумает переменить все знаки у всех амплитуд, подумав, что он повернулся на 360°, то это его дело — физику он получит ту же, прежнюю[14]. Итак, наш окончательный ответ таков: если мы знаем амплитуды С+ и С- для частиц со спином 1/2 по отношению к системе отсчета S и если затем мы используем базисную систему, связанную с Т (Т получается из S поворотом на φ относительно оси z), то новые амплитуды выражаются через старые так:

(4.19)

§ 4. Повороты на 180° и па 90° вокруг оси у

Теперь попробуем подобрать преобразование для поворота Т (по отношению к S) на 180° вокруг оси, перпендикулярной к оси z, скажем вокруг оси у. (Оси координат мы определили на фиг. 4.1.) Иными словами, берутся два одинаковых прибора Штерна—Герлаха и второй из них, Т, переворачивается относительно первого, S, «вверх ногами» (фиг. 4.6).

вернуться

13

Конечно, подошло бы и m=-1/2. Однако из (4.17) ясно, что изменение знака просто переопределит понятие «спин вверх».

вернуться

14

Заметим, что если последовательность малых поворотов приведет в конце концов к первоначальной ориентации предмета, то всегда есть возможность, проследив всю историю, отличить поворот на 360° от поворота на 0° (но интересно, что для поворота на 720° это неверно).