Выбрать главу

Фиг. 5.1. Релятивистское преобразование амплитуды покоящейся частицы в систему х—t.

В другой системе, х', у', z', t', движущейся относительно частицы, скажем, в направлении х, координаты х' и t' некоторой частной точки пространства связаны с х и t преобразованием Лоренца. Это преобразование можно изобразить графически, проведя оси х' и t', как показано на фиг. 5.1 [см. гл. 17 (вып. 2), фиг. 17.2]. Вы видите, что в системе х'—t' точки равной фазы[17] вдоль оси t' расположены на других расстояниях, так что частота временных изменений уже другая. Кроме того, фаза меняется и по х', т. е. амплитуда вероятности должна быть функцией х'.

При преобразовании Лоренца для скорости v, направленной, скажем, вдоль отрицательного направления х, время t связано со временем t' формулой

и теперь наша амплитуда меняется так:

В штрихованной системе она меняется в пространстве и во времени. Если амплитуду записать в виде

то видно, что Е'р=Е0/√(1-v22). Это энергия, вычисленная по классическим правилам для частицы с энергией покоя Е0, движущейся со скоростью v; p'=E'pv/c2— соответствующий импульс частицы.

Вы знаете, что хμ=(t, х, y, z) и рμ=(Е, pх, py, pz) — четырехвекторы, а pμxμ=Et-р·х —скалярный инвариант. В системе покоя частицы pμxμ просто равно Et; значит, при преобразовании в другую систему Et следует заменить на

Итак, амплитуда вероятности для частицы, импульс которой есть р, будет пропорциональна

(5.5)

где Ер — энергия частицы с импульсом р, т. е.

(5.6)

а Е0, как и прежде, —энергия покоя. В нерелятивистских задачах можно писать

(5.7)

где Wp — избыток (или нехватка) энергии по сравнению с энергией покоя Мsс2 частей атома. В общем случае в Wp должны были бы войти и кинетическая энергия атома, и его энергия связи или возбуждения, которые можно назвать «внутренней» энергией. Тогда мы бы писали

(5.8)

а амплитуды имели бы вид

(5.9)

Мы собираемся все расчеты вести нерелятивистски, так что именно таким видом амплитуд вероятностей мы и будем пользоваться.

Заметьте, что наше релятивистское преобразование снабдило нас формулой для изменения амплитуды атома, движущегося в пространстве, не требуя каких-либо добавочных допущений. Волновое число ее изменений в пространстве, как это следует из (5.9), равно

(5.10)

а, значит, длина волны

(5.11)

Это та самая длина волны, которую мы раньше использовали для частиц с импульсом р. Именно таким путем де-Бройль впервые пришел к этой формуле. Для движущейся частицы частота изменения амплитуды по-прежнему дается формулой

(5.12)

Абсолютная величина (5.9) равна просто единице, так что для частицы, движущейся с определенной энергией, вероятность обнаружить ее где бы то ни было — одна и та же повсюду и со временем не меняется. (Важно отметить, что амплитуда это комплексная волна. Если бы мы пользовались вещественной синусоидой, то ее квадрат от точки к точке менялся бы, что было бы неверно.)

Конечно, мы знаем, что бывают случаи, когда частицы движутся от одного места к другому, так что вероятность зависит от положения и изменяется со временем. Как же нужно описывать такие случаи? Это можно сделать, рассматривая амплитуды, являющиеся суперпозицией двух или большего числа амплитуд для состояний с определенной энергией. Такое положение мы уже обсуждали в гл. 48 (вып. 4), причем именно для амплитуд вероятности! Мы нашли тогда, что сумма двух амплитуд с разными волновыми числами k (т. е. импульсами) и частотами ω (т. е. энергиями) приводит к интерференционным буграм, или биениям, так что квадрат амплитуды меняется и в пространстве, и во времени. Мы нашли также, что эти биения движутся с так называемой «групповой скоростью», определяемой формулой

вернуться

17

Мы предполагаем, что фазы обязаны иметь одно и то же значение в соответствующих точках в двух системах координат. Впрочем, это весьма тонкое место, поскольку в квантовой механике фаза в значительной степени произвольна. Чтобы до конца оправдать это предположение, нужны более детальные рассуждения, учитывающие интерференцию двух или нескольких амплитуд.