When I returned to my university from the visit to Sammy, I looked up the biographies of the great mathematicians who had played a part in my uncle's story. Of the six mentioned in his narrative only two, a mere third, had lived a personal life that could be considered more or less happy and these two, significantly, were comparatively speaking the lesser men of the six, Caratheodory and Littlewood. Hardy and Ramanujan had attempted suicide (Hardy twice), and Turing had succeeded in taking his own life. Gödel's sorry state I've already mentioned. [15] Adding Uncle Petros to the list made the statistics even grimmer. Even if I still admired the romantic courage and persistence of his youth, I couldn't say the same of the way he'd decided to waste the second part of his life. For the first time I saw him for what he had clearly been all along, a sad recluse, with no social life, no friends, no aspirations, killing his time with chess problems. His was definitely not a prototype of the fulfilled life.
Sammy's theory of hubris had haunted me ever since I'd heard it, and after my brief review of mathematical history I embraced it wholeheartedly. His words about the dangers of coming too close to Truth in its absolute form kept echoing in my mind. The proverbial 'mad mathematician' was more fact than fancy. I came increasingly to view the great practitioners of the Queen of Sciences as moths drawn towards an inhuman kind of light, brilliant but scorching and harsh. Some couldn't stand it for long, like Pascal and Newton, who abandoned mathematics for theology.
Others had chosen haphazard, improvised ways out – Evariste Galois' mindless daring that led to his untimely death comes immediately to mind. Finally, some extraordinary minds had given way and broken down. Georg Cantor, the father of the Theory of Sets, led the latter part of his life in a lunatic asylum. Ramanujan, Hardy, Turing, Gödel and so many more were too enamoured of the brilliant light; they got too close, scorched their wings, fell and died.
In a short while I realized that even if I did have their gift (which, after listening to Uncle Petros' story, I began seriously to doubt) I definitely did not want to suffer their personal misery. Thus, with the Scylla of mediocrity on the one side and the Charybdis of insanity on the other, I decided to abandon ship. Although I did, come June, eventually get my BA in Mathematics, Ihad already applied for graduate studies in Business Economics, a field that does not traditionally provide material for tragedy.
Yet, I hasten to add, I've never regretted my years as a mathematical hopeful. Learning some real mathematics, even my tiny portion of it, has been for me the most invaluable lesson of life. Obviously, everyday problems can be handled perfectly well without knowledge of the Peano-Dedekind Axiomatic System, and mastery of the Classification of Finite Simple Groups is absolutely no guarantee of success in business. On the other hand, the non-mathematician cannot conceive of the joys that he's beert denied. The amalgam of Truth and Beauty revealed through the understanding of an important theorem cannot be attained through any other human activity, unless it be (I wouldn't know) that of mystical religion. Even if my education was meagre, even if it meant no more than getting my toes wet on the beach of the immense ocean of mathematics, it has marked my life for ever, giving me a small taste of a higher world. Yes, it has made the existence of the Ideal slightly more believable, even tangible.
For this experience I am forever in Uncle Petros' debt: it's impossible I would have made the choice without him as my dubious role model.
My decision to abandon plans of a mathematical career came as a joyful surprise to my father (the poor man had fallen into deep despair during my last undergraduate years), a surprise made even happier when he learned I would be going to business school. When, having completed my graduate studies and military service, I joined him in the family business, his happiness was at last complete.
Despite this volte-face (or maybe because of it?) my relationship with Uncle Petros blossomed anew after I returned to Athens, every vestige of bitterness on my part totally dissipated. As I gradually settled down to the routines of work and family life, visiting him became a frequent habit, if not a necessity. Our contact was an invigorating antidote to the increasing grind of the real world. Seeing him helped me keep alive that part of the self that most people lose, or forget about, with adulthood – call it the Dreamer or the Wonderer or simply the Child Within. On the other hand, I never understood what my friendship offered him, if we exclude the companionship he claimed not to need.
We wouldn't talk all that much on my visits to Ekali, as we'd found a means of communication better suited to two ex-mathematicians: chess. Uncle Petros was an excellent teacher and soon I came to share his passion (though unfortunately not his talent) for the game.
In chess, I also had the first direct experience of him as a thinker. As he analysed for my benefit the classic great games, or the more recent contests of the world's best players, I was filled with admiration for the workings of his brilliant mind, its immediate grasp of the most complex problems, its analytical power, the flashes of insight. When he confronted the board his features became fixed in utter concentration, his gaze became sharp and penetrating. Logic and intuition, the instruments with which he'd pursued for two decades the most ambitious intellectual dream, sparkled in his deep-set blue eyes.
Once, I asked him why he had never entered official competition.
He shook his head. 'Why should I strive to become a mediocre professional when I can bask in my status as an exceptional amateur?' he said. 'Besides, most favoured of nephews, every life should progress according to its basic axioms and chess wasn't among mine – only mathematics.'
The first time I ventured to ask him again about his research (after the extensive account of his life he had given me, we'd never again mentioned anything mathematicaL both of us apparently preferring to let our sleeping dogs lie) he immediately dismissed the matter.
'Let bygones be bygones and tell me what you see on the chessboard. It's a recent game between Petrosian and Spassky, a Sicilian Defence. White takes Knight to f4…'
More oblique attempts didn't work either. Uncle Petros would not be coaxed into another mathematical discussion – period. Whenever I attempted a direct mention it would always be: 'Let's stick to chess, shall we?'
His refusals, however, didn't make me give up.
My wish to draw him once again to the subject of his life's work was not fired by mere curiosity. Although it was a long time since I had any news of my old friend Sammy Epstein (last time I'd heard of him he was an assistant professor in California), I couldn't forget his explanation of Uncle Petros giving up his research. In fact, I'd come to invest it with great existential significance. The development of my own affair with mathematics had taught me an important lesson: one should be brutally honest with oneself about weaknesses, acknowledge them with courage and chart further course accordingly. For myself I had done this, but had Uncle Petros?
These were the facts: a) From an early age he had chosen to invest all his energy and time in an incredibly, but most probably not impossibly, difficult problem, a decision which I still continued to regard as basically noble; b) As might reasonably have been expected (by others, if not by himself) he had not achieved his goal; c) He had blamed his failure on the incompleteness of mathematics, deeming Goldbach's Conjecture unprovable.
Of this much I was now certain: the validity of his excuse had to be judged by the strict standards of the trade and, according to these, I accepted Sammy Epstein's opinion as final – a final verdict of unprovability a la Kurt Gödel is just not an acceptable conclusion of the attempt to prove a mathematical statement. My old friend's explanation was much closer to the point. It wasn't because of his 'bad luck' Uncle Petros hadn't managed to achieve his dream. The appeal to the Incompleteness Theorem was indeed a sophisticated form of 'sour grapes', meant only to shelter him from the truth.
[15] Gödel subsequently ended his own life, in 1978, while being treated for urinary tract problems at the Princeton County Hospital. His method of suicide was, like his great theorem, highly originaclass="underline" he died of malnutrition, having refused all food for over a month, convinced that his doctors were trying to poison him