L = Q1∙(T1 – T2)/T1 (3.1)
Здесь, как и на рис. 3.1, высокая температура Т1 в Кельвинах соответствует подводу теплоты Q1 к двигателю, а более низкая Т2 — та, при которой теплота отдается. Из формулы (3.1) прямо следуют многие важные следствия. Для нас имеют значение два вывода.
Первый вывод состоит в том, что получаемая работа всегда меньше подводимой к двигателю теплоты Q. Действительно, коэффициент Карно (Т1 — Т2)/Т1 (или 1 — T2/T1) всегда меньше единицы. Другими словами, в работу может быть превращена только часть получаемой теплоты; другая часть, равная Q2 = Q1 — L, неизбежно должна быть отдана какому-либо теплоприемнику[48] при температуре Т2. Чем выше температура Т1 и ниже Т2, тем большая доля теплоты Q1 может быть превращена в работу. Но всю теплоту Q1 в работу преобразовать нельзя (для этого Т1 должна была бы быть бесконечно большой или Т2 бесконечно малой).
Так, например, если Т1 = 1200 К, а T2 = 300 К, то из 100 кДж теплоты может быть получено (1200 – 300)/1200 кДж = 75 кДж работы. Остальные 25 кДж могут быть отведены только в виде теплоты Q2 < Q1 при температуре Т2 = 300 К.
Таким образом, из принципа Карно следует, что превратить теплоту в работу полностью нельзя. Следовательно, в природе существует асимметрия во взаимной превратимости теплоты и работы: работа в теплоту может превратиться полностью, но теплота в работу — только частично. Другая, непревратимая часть теплоты неизбежно отводится из двигателя к теплоприемнику (но при более низкой температуре).
Второй вывод из принципа Карно состоит в том, что получение работы из теплоты возможно только в том случае, когда между теплоотдатчиком и теплоприемником есть разность температур (т. е. Т1 > T2). Действительно, из формулы (3.1) следует, что чем меньше разность Т1 — Т2, тем меньшая доля теплоты Q может быть превращена в работу. Если же Т1 = Т2, т. е. если двигатель вступает в тепловой контакт с телами, имеющими одну и ту же температуру, то никакой работы он произвести не может (Т1 — T2 = 0, и, следовательно, L = 0 при любом Q).
Никакими ухищрениями обойти оба эти следствия из принципа Карно нельзя.
Второй вывод из принципа Карно убивает наповал идею о двигателе, работающем за счет теплоты, получаемой из равновесной окружающей среды (ppm-2).
Как бы ни была велика связанная с хаотическим тепловым движением молекул внутренняя энергия, содержащаяся в окружающей среде[49], она неработоспособна, ибо в этом случае в нашем распоряжении есть только одна температура — окружающей среды TО.С..
Таким образом, само по себе наличие энергии еще не говорит о том, что может быть получена работа: энергия может быть и неработоспособной. Поэтому определение энергии, которое еще встречается в некоторых книгах и даже учебниках, как «величины, характеризующей способности тела (или системы) производить работу», в общем случае неверно. Оно досталось по наследству от XVII-XVIII вв., когда представление об энергии (по тогдашней терминологии — «силе») было связано только с механической работой. Принцип Карно ясно показывает, что такое определение (во всяком случае, применительно к внутренней энергии тела и к теплоте, отводимой от него) неверно.
Вокруг нас в воздухе, воде, почве содержится гигантское количество внутренней энергии хаотического молекулярного движения, но, увы, она вопреки надеждам изобретателей ppm-2 для получения работы абсолютно бесполезна. Это утверждает принцип Карно, вытекающий из второго закона термодинамики.
Из всего изложенного неизбежно следует, что единственный способ обоснования возможности «извлекать тепловую энергию из окружающего пространства» и получать из нее работу состоит в низвержении второго закона термодинамики. Вокруг этой крепости — второго закона — и развертывают все баталии изобретатели и теоретики ppm-2.
Чтобы разобраться во всем этом и показать безнадежность попыток опровергнуть второй закон, нужно рассмотреть некоторые его положения, не ограничиваясь принципом Карно. Особое внимание следует уделить вопросу об энтропии — величине, занимающей центральное место в концепции второго закона. На ее долю выпадает максимальное количество атак, кривотолков и даже нехороших слов. Один из ее противников назвал ее даже «ржавым замком», который запирает ворота на пути дальнейшего движения науки.
48
Здесь и в дальнейшем «теплоприемником» будет называться объект (например, атмосферный воздух),
49
Ее часто называют «теплотой окружающей среды», но это неверно, как мы уже показали в гл. 2, ибо теплота «содержаться» в окружающей среде (как и в любом другом теле) не может.