Выбрать главу

Теперь мы можем возвратиться к цитатам из М.А. Мамонтова.

Во втором и третьем пунктах, следующих за словами «В результате чего», все, что происходит в двигателе, почему-то понимается наоборот. Работа, как мы видели, совершается не «за счет охлаждения» (как в адиабатном процессе), а напротив, путем постоянного нагрева рабочего вещества. Ведь теплота QО.С., которая обеспечивает работу двигателя, все время подводится к рабочему телу, а не отводится от него. Поэтому второй пункт неверен. Третий пункт совсем непонятен. Передача теплоты идет не «от рабочего тела», а наоборот, к рабочему телу (газу). И не при «отрицательной» разности температур, а при положительной (ΔT = ТО.С. — T), и не «от тела с низкой температурой» (газа), а напротив, к нему из окружающей среды.

В последующей части цитаты нет таких «перевертышей». Если не с читать слова «переохлаждение»[77], которое здесь ни к чему (нужно просто «охлаждение»), то фактическая сторона дела изложена без ошибок. Но трактовка событий неверна принципиально. Автор полагает, что от изотермического двигателя можно получать работу «также за счет использования дарового тепла атмосферы». На первый взгляд, это действительно может показаться правильным: ведь работа LИЗ равна подведенной из окружающей среды теплоте QО.С.. Но такой вывод был бы преждевременным. Подумаем: если бы воздух не был предварительно сжат, мог бы работать двигатель «за счет дарового тепла атмосферы»? Очевидно, нет. А откуда взялось давление? Из компрессора, в котором происходит процесс, обратный тому, который идет в двигателе. Там газ сжимается от РО.С. (точка 2'') до р1. При этом его температура (если вести процесс тоже изотермически) будет не ниже, а выше TО.С. на ΔT и теплота QО.С. будет отдана среде, а двигатель столько же теплоты взял у нее обратно. В итоге выходит нуль! Работа L получается только за счет точно такой же работы, затраченной на сжатие в компрессоре. Так будет в идеальном случае, если компрессор и двигатель точно изотермические. В реальных условиях работа, подведенная к компрессору, и количество отведенной в окружающую среду теплоты будут больше, чем работа, полученная в двигателе, и намного больше, чем теплота, которую он заберет из окружающей среды. В итоге будет все та же классическая картина — суммарная энтропия вырастет, эксергия, напротив, частично потеряется, поскольку эксергия сжатого воздуха после компрессора будет меньше подведенной работы, а работа пневматического двигателя — меньше эксергии сжатого воздуха (практически остается от 5 до 10% затраченной на компрессоре работы). Читатель может сам при желании это проверить, составив соответствующую схему потоков энергии и эксергии.

Изложенное показывает всю беспочвенность последней тирады М.А. Мамонтова против классической термодинамики. Мы видели, что при анализе пневмодвигателя нет никакого расхождения с бесспорными фактами и они вполне вписываются в ее понятия.

Как тут не вспомнить, что сказал еще в XVII в. великий английский ученый Р. Гук [1.28]: «Большинство ученых очень поверхностны…, из нескольких неопределенных и недостоверных положений они делают самые общие выводы и с помощью их устанавливают законы, правящие миром и природой». Если заменить в этом высказывании слово «большинство» на «меньшинство», то оно вполне годится и для нашего времени.

Профессор М.А. Мамонтов не ограничился теоретическими изысканиями. Осуществляя связь науки и производства, он предложил и соответствующий теории двигатель «с одним источником тепла». Приведем рисунок и описание, взятые из уже упомянутой книги автора.

«Рассмотрим теперь поршневой двигатель, индикаторная диаграмма которого представлена на рис. 8.[78]

Рис. 5.8. Индикаторная диаграмма поршневого двигателя «с одним источником тепла»

До начала движения поршня в рабочую полость при неизменном начальном ее объеме впрыскивается низкокипящая жидкость, которая испаряется и нагревается до температуры окружающей среды (атмосферного воздуха) под действием температуры этой среды.

вернуться

77

Переохлаждение — это совсем другое: охлаждение вещества ниже температуры перехода в другое агрегатное состояние. Например, вода, охлажденная до —10°С, но не превратившаяся в лед, называется «переохлажденной».

вернуться

78

Рисунок 8 из книги М.А. Мамонтова воспроизведен на рис.5.8.