Выбрать главу

— Элементы, как самые простые, надо поставить на первое место. Разумеется, соединений намного больше, но и при их рассмотрении надо начать с более простых, — размышлял Бойль.

— Тогда надо начинать с металлов, — подсказал Гомберг.

— Будем надеяться, что мы на правильном пути. В самом деле, металлы — простые соединения, потому что при погружении в кислоту они разлагаются под ее действием и выделяют содержащийся в них «воздух». Потом идет класс витриолов — синего, зеленого, белого. Металлы с «ацидум олеум витриолд» образуют твердые вещества — «витриоли». Продолжим изучение соединений металлов с другими кислотами.

Бойль и Гомберг получили и исследовали много солей. Их классификация с каждым экспериментом становилась все обширнее и полнее. Не все в толковании ученых было достоверно, не все соответствовало существовавшим в те времена представлениям, и, однако, это был смелый шаг к последовательной теории, шаг, который превращал химию из ремесла в науку. Это была попытка ввести теоретические основы в химию, без которых немыслима наука, без которых она не может двигаться вперед.

Гийом Гомберг, переселившись со временем во Францию, применял новый подход к изучению веществ в Парижской Академии наук.

А Бойль продолжал свои исследования в Оксфорде. После Гомберга его ассистентом стал молодой физик Роберт Гук[58]. В основном они посвятили свои исследования газам и развитию корпускулярной теории.

— Декарт утверждает, что тела состоят из корпускул и эфира[59], — говорил Бойль. — Тогда в газах, где корпускулы перемещаются свободно, должно быть чрезвычайно много эфира.

— Сторонники Декарта, картезианцы, убеждены в этом, — сказал Гук.

— Да, но что показывает опыт Торричелли[60]? В трубке над ртутью существует пустое пространство.

— А может быть, корпускулы газов перемещаются в пустом пространстве?

— Это необходимо проверить, — ответил Бойль. — Изготовим аппаратуру, из которой с помощью насоса удалим воздух, и исследуем, что осталось в сосуде: пустое пространство или эфир.

— Но у нас плохие насосы.

— Попытаемся сделать сами более совершенные, если возникнет в этом нужда.

Началась работа. Бессонные ночи, нервное напряжение, волнующие ожидания… Насосы и в самом деле никуда не годились. Они не могли удалить полностью воздух из сосуда. И тогда Гук принялся за конструирование нового насоса. С его помощью исследователям удалось почти полностью удалить воздух. Однако все попытки доказать присутствие эфира в пустом сосуде оставались тщетными. Бойль провел еще одно дополнительное усовершенствование насоса. Он» повторили опыт, но» результат оставался прежним.

— Никакого эфира не существует, — подвел итоги работы БоЁль.

— Это пустое пространство, какое существует и в торричеллевой пустоте.

— Да, и это пустое пространство мы; назовем вакуумом, что по-латыни означает «пустой». Итак, в сосуде с газом должны быть только корпускулы и вакуум.

— Но это же удар по картезианцам. Они не замедлят обрушиться на нас в своих трактатах.

Первый пневматический прибор Бойля — воздушный насос (1660 г.) (J. R. Partington, A History of Chemistry, V. 2,1964)

Гук был прав. Сторонники Декарта и в самом деле подняли шумиху по этому поводу, но доказывали они свою правоту на словах, а Бойль располагал результатами опытов. Он не любил вступать в споры. Его мягкому характеру были не свойственны ожесточенные схватки, на которые вызывали его картезианцы. Он упорно продолжал исследования — надо было собрать новые данные, написать новые книги. Именно так он ответит своим противникам и представит новые доказательства неоспоримости сделанных им выводов[61].

Кризис, охвативший в конце пятидесятых годов всю Англию, прервал его научную работу. Возмущенные жестокой диктатурой Кромвеля сторонники монархии вновь поднялись на борьбу. Аресты и убийства, кровавая междоусобица стали обычным явлением в стране.

Бойль удалился в поместье: там можно было спокойно трудиться. Он решил изложить результаты своих исследований за последние десять лет. В кабинете Бойля работали почти круглосуточно два секретаря. Один под его диктовку записывал мысли ученого, другой переписывал начисто уже имевшиеся наброски. За несколько месяцев они закончили первую большую научную работу Бойля «Новые физико-механические эксперименты относительно веса воздуха и его проявления»[62]. Книга вышла в свет в 1660 году. В ней Бойль описал все опыты, проведенные за последние два года, и впервые выступил с критикой учения Аристотеля о четырех элементах, декартова «эфира» и трех алхимических начал. Естественно, этот труд вызвал резкие нападки со стороны последователей Аристотеля и картезианцев. Однако Бойль опирался в нем на опыт, и потому доказательства его были неоспоримы. Большая часть ученых — последователи корпускулярной теории — с восторгом восприняли идеи Бойля. Многие из его идейных противников тоже вынуждены были признать открытия ученого, в их числе и физик Христиан Гюйгенс[63], сторонник идеи существования эфира.

вернуться

58

Роберт Гук [1635 (или 1638) —1703] стал в Оксфорде помощником Бойля и вместе с ним осуществлял почти все многочисленные эксперименты, проводившиеся в Лондонском королевском обществе в первый период его деятельности. Гука иногда называют отцом современного приборостроения: он изобрел воздушно-механический барометр, зеркальный телескоп, установил постоянные точки термометра и др. Одним из первых среди ученых своего времени отметил увеличение веса при обжигании металлов и указал на роль воздуха в этой реакции. Гук также открыл закон, выражающий зависимость между напряжением и деформацией тела. (Копелевич Ю. X., ук. соч., с. 47—50 и др.; Бернал Дж., ук. соч., с. 254 и др.; Погребысская Е. И. Творцы физической оптики. — М.: Наука, 1973; Выдающиеся физики мира, ук. соч., с. 72—76.)

вернуться

59

Эфир (от греч. “aither” — верхний слой воздуха) — предполагавшаяся ранее универсальная сплошная неподвижная среда, заполняющая все мировое пространство, в том числе и промежутки между атомами и молекулами в телах. Существование эфира допускалось учеными с целью объяснить взаимодействия электрически заряженных и намагниченных тел на расстоянии, а также всемирного тяготения тел.

вернуться

60

Эванджелиста Торричелли (1608—1647) —итальянский физик и математик, ученик Г. Галилея. С помощью изобретенного им ртутного барометра открыл давление воздуха и возможность существования вакуума. В 1643 г. сформулировал закон истечения жидкости из сосуда и установил, что над свободной поверхностью жидкости, заполняющей закрытую сверху трубу, нижний конец которой помещен в чашку с такой же жидкостью, образуется безвоздушное пространство — торричеллева пустота. О Торричелли см.: Розенберг Ф. История физики. Ч. 2. — 2-е изд. — М. —Л., 1937; Цейтен Г. Г. История математики в XVI и XVIII вв. — 2-е изд. — М. —Л., 1938; Льоцци М., ук. соч., с. 87—89, 97—102 и др.; Дорфман Я. Г. Всемирная история физики с древнейших времен до конца XVIII в. — М.: Наука, 1974, с. 157—171 и др.; Кудрявцев П. С. Эванджелиста Торричелли. — М.: Знание, 1958; Выдающиеся физики мира, ук. соч., с. 50—53.

вернуться

61

В книге «О пользе экспериментальной натуральной философии» Бойль изложил свои философские взгляды и показал, какова польза от связи «философской науки» с «экспериментальными ремеслами» (Копелевич Ю. X., ук. соч., с. 55).

вернуться

62

Полное название: «Новые эксперименты о том, как сделать огонь и пламя стойкими и весомыми» (Лондон, 1673 г.).

вернуться

63

Христиан Гюйгенс (1629—1695) — нидерландский механик, физик и математик, член Парижской Академии наук (с 1666 г.) и Лондонского королевского общества (с 1663 г.). Создал волновую теорию света (1678 г., опубл. в 1690 г.) и заложил основы теории удара, построил первые часы с маятником (1657 г.), в 1655 г. открыл спутник (Титан) Сатурна и обнаружил кольца вокруг этой планеты. Сконструировал окуляр, носящий его имя. О Гюйгенсе см.: Льоции М., ук. соч., с, 91—94 и др.; Дорфман Я. Г., ук. соч., с. 165—170 и др.; Веселовский И. Н. Христиан Гюйгенс. — М.: Учпедгиз, 1959; Гиндикин С. Г. Рассказы о физиках и математиках. — М.: Наука, 1981, с. 96—115; Голин Г. М., ук. соч., с. 20—23; Выдающиеся физики мира, ук. соч., с. 65—71. Некоторые работы Гюйгенса изложены в книге: Гюйгенс X. Три мемуара по механике. — М.: Изд-во АН СССР, 1951. — Классики науки).