В это время Фарадей стал работать в близком контакте с Гершелем. Молодой Гершель занимался изучением света. Для его исследований необходимы были самые разнообразные оптические приборы. Для их изготовления нужно было специальное оптическое стекло. Гершель обратился за помощью к Фарадею.
— Джордж Доллонд[331] выполнил все мои пожелания и сконструировал очень сложные приборы, но качество стекла линз меня не устраивает. Нужно стекло с лучшими свойствами преломления света. Я осмелюсь, господин Фарадей, попросить вашей помощи.
— В каком смысла?
— Попытайтесь создать стекло с хорошими преломляющими свойствами.
— Пожалуй, я попытаюсь помочь вам. Печь в подвале института, в которой когда-то варили сталь, еще сохранилась. Первые опыты проведем там. Для начала нам понадобится только несколько специальных тиглей.
Почти пять лет Фарадей получал и исследовал разнообразные сорта стекла. Он получил тяжелое боросиликатное стекло с очень хорошими оптическими свойствами[332]. Были получены и другие виды стекла. Однако постепенно Фарадей потерял интерес к этой работе. Его по-прежнему увлекало электричество. Но его аппаратура для исследований давно покрылась пылью: после смерти Дэви никто не занимался этими вопросами. Летом 1831 года Фарадей оставил все другие исследования и целиком посвятил себя этой проблеме. За короткий промежуток времени он открыл принцип действия трансформатора и динамомашины, явление электромагнитной индукции. Особенно интересными ему показались вопросы, связанные с прохождением электрического тока через различные вещества. Фарадей установил, что водные растворы некоторых веществ проводят электрический ток. Два конца проводника, которые он погружал в раствор электролита, были названы им электродами[333]. В это время он нередко встречался и беседовал с Реверендом Уэвеллом[334], занимавшимся историей науки.
— Когда я вращаю диск электрической машины, электричество, которое она создает, протекает через электроды в раствор. Оно вызывает разложение растворенного вещества на два вида частиц — катионы (несущие положительный заряд) и анионы (несущие отрицательный заряд). Потом катионы направляются к катоду, а анионы — к аноду. Здесь они теряют свои заряды и превращаются в нейтральные вещества. Вот схема процесса электролиза, — пояснил Фарадей.
— Будет ли этот процесс иметь практическое значение?
— Конечно. Еще до выяснения сущности этого явления Дэви сумел с его помощью получить калий, натрий, кальций и ряд других металлов.
— Занятно.
— Я могу показать действительно нечто занятное. Посмотрите. Эта бумажка пропитана раствором иодида калия. Присоединяю к ней оба проводника и начинаю вращать диск электрической машины. Видите, около одного электрода образовалось коричневое пятно. Это анод. Обратите внимание, как пятно постепенно увеличивается.
— Да, и чем дольше вы вращаете диск, тем обширнее становится коричневое пятно.
— Выделяется свободный иод. Но важнее другое. Вы имеете возможность наглядно убедиться в основной закономерности: количество выделенного на электродах вещества прямо пропорционально прошедшему через раствор количеству электричества.
Уэвелл остановил взгляд на склянке, наполненной каким-то раствором. В нее были погружены две пробирки, заполненные раствором.
— А это что такое?
Это вольт-электрометр. Закон электролиза, который я только что вам демонстрировал, может использоваться для измерения количества электричества. Если через этот раствор пропустить ток, в пробирках собираются водород и кислород. Чем больше соберется этих газов, тем большее количество электричества прошло через раствор.
— Придумано весьма остроумно.
— С помощью этого прибора я проверил, каков будет результат, если через различные растворы пропустить одно и то же количество электричества. И знаете, что установил?
Уэвелл с интересом ждал ответа.
— Количества веществ, выделенных одним и тем же количеством электричества, относятся друг к другу, как их химические эквиваленты.
Это были два великих закона — первый и второй законы электролиза.
— Знаете, Уэвелл, мне кажется, что я начинаю стареть.
331
Джордж Доллонд (1774–1852) — один из членов потомственной английской семьи мастеров-инструментальщиков.
332
В процессе работы по улучшению качества оптического стекла (1824–1830 гг.) Фарадей получил тяжелое свинцовое стекло, хорошо отвечавшее требованиям оптики. Это стекло применялось в микроскопах и призмах. Спустя 20 лет, используя свое «тяжелое стекло», Фарадей открыл явление вращения плоскости поляризации света. Открытое Фарадеем явление сыграло большую роль в развитии стереохимии.
333
Фарадей предложил ряд электрохимических терминов, которые прочно вошли в науку: электролиз (с греческого — разложение электричеством), электрод (путь электричества), катод (путь вниз), анод (путь вверх), ион (идущий), электролит (вещество или раствор, подвергаемые электролизу), анион, катион, диэлектрик (Менпгуткин Б. Н., ук. соч., с. 176–177; Химия и жизнь, № 2, 1973; Выдающиеся физики мира, ук. соч., с. 175–183; Радовский М. И. Фарадей. — М.: Мол. гвардия, 1936. — (ЖЗЛ); Bugge G., ук. соч., с. 417–427; Голин Г. М., ук. соч., с. 52–55; История учения о химическом процессе, ук. соч., с. 134 и сл.; Азимов А. Краткая история химии: Развитие идей и представлений в химии. Пер. с англ. — М.: Мир, 1983, с. 65–68.
334
Реверенд Уильям Уэвелл (Вэвелл) (1794–1866) — английский ученый-классик и историк науки, коллега по работе Фарадея, участвовал в компании по введению в электрохимию новой терминологии; в своей «Философии индуктивных наук» (1840 г.) впервые употребил слово «ученый». О Уэвелле см.: Химия и жизнь, № 2, 38 (1973); Мамчур Е. А. Тр. XIII Межд. конгресса по истории науки. Секция I. — М., 1974, с. 322–325.