Выбрать главу

Из-за того, что электроны и протоны обычно (но не всегда) объединяются друг с другом, восстановление иногда определяют как перенос атома водорода. Но чтобы разобраться в окислительно-восстановительных процессах, для начала следует сосредоточиться на электронах. Последовательность окислительно-восстановительных реакций сводится к путешествию электрона по цепи связанных друг с другом переносчиков. (Не слишком отличается от течения тока по проводам.) Именно это происходит при дыхании. Электроны от питательных веществ переходят на кислород не сразу (как при горении, когда энергия выделяется вся и сразу), а в несколько стадий, прыгая с одного переносчика на другой, будто с кочки на кочку. Обычно “кочками” служат ионы железа (Fe3+), встроенные в белки дыхательной цепи. Как правило, ион железа входит в состав неорганической кристаллической структуры, которая называется железосерным кластером (рис. 8). С одного кластера электрон перепрыгивает на другой, очень похожий, но с чуть более высоким сродством к электрону (более “жадного”). Когда электрон передается от одного кластера к другому, каждый раз сначала происходит восстановление (принимая электрон, Fe3+ восстанавливается до Fe2+), а затем окисление (потеря электрона и обратный переход в Fe3+). Наконец, совершив пятнадцать или больше прыжков, электрон достигает кислорода. На первый взгляд, у фотосинтеза у растений и дыхания у животных мало общего, однако в главном они совпадают. В основе обоих процессов лежит перенос электрона по “дыхательным цепям”. Почему? Жизнь могла бы существовать за счет тепловой или механической энергии, радиоактивного или ультрафиолетового излучения, или электрических разрядов. Число вариантов ограничено лишь вашим воображением. Но нет: все живое существует благодаря окислительно-восстановительным реакциям, которые происходят на удивительно сходных дыхательных цепях.

Второй неожиданный аспект использования энергии живыми организмами – это хитроумный механизм хранения энергии в химических связях АТФ. Живые организмы синтезируют АТФ не непосредственно, а путем создания протонных градиентов на тонких мембранах[21]. Вскоре мы дойдем до объяснения, что это означает и как работает. А пока вспомним, что о существовании такого странного механизма никто долго и помыслить не мог (по словам молекулярного биолога Лесли Оргела, это “самая парадоксальная идея со времен Дарвина”). На сегодняшний день до мельчайших деталей изучены молекулярные механизмы создания и поддержания протонных градиентов. Мы знаем, что все живое на Земле использует протонные градиенты – это такая же неотъемлемая часть жизни, как ДНК. Но и теперь мы почти ничего не знаем о том, как возник биологический механизм генерации энергии. Какими бы ни были причины – жизнь, похоже, использует поразительно ограниченный и довольно странный набор из всех возможных энергетических механизмов. Каприз истории? Или эти способы настолько лучше прочих, что в конце концов лишь они остались в употреблении? Или же (а вот это интересней) мы имеем дело с единственным возможным вариантом?

Рис. 8. Дыхательный комплекс I.

А. Железосерные кластеры расположены на более или менее одинаковом расстоянии друг от друга (14 ангстрем или меньше). Электроны перескакивают между кластерами путем квантового туннелирования в указанном стрелками направлении. Цифрами обозначено расстояние (в ангстремах) между окислительно-восстановительными центрами (кластерами). Цифры в скобках указывают расстояние от одного края до другого.

Б. Общий вид структуры бактериального комплекса I. Это изображение получено Лео Сазановым при помощи рентгеноструктурного анализа. Вертикальная “рука” переносит электроны от ФМН – места вхождения электронов в дыхательную цепь – на коэнзим Q (убихинон), который перемещает электрон на следующий белковый комплекс. Расположение железосерных кластеров в белке можно увидеть на рисунке А.

вернуться

21

В реакциях брожения АТФ синтезируется непосредственно, без участия мембран и протонных градиентов. – Прим. науч. ред.