Выбрать главу

Взаимоотношение зародышей жизни и ее предшественников — сложных соединений углерода — представляет собой первостепенную научную задачу. Первые опыты Л. Пастера, поставленные во второй половине XIX в., показали невозможность в современных условиях Земли зарождения жизни — простейших живых организмов. Это в какой-то мере привело к возникновению идей панспермии[1], согласно которым жизнь на Земле вообще никогда не зарождалась, а была занесена из космического пространства, где она существовала в виде зародышей. Наиболее характерными сторонниками этих представлений выступили Г. Гельмгольц и С. Аррениус, хотя ранее подобные идеи высказывались Ю. Либихом. По С. Аррениусу, частицы живого вещества — споры или бактерии, осевшие на микрочастицах космической пыли, силой светового давления переносятся с одной планеты на другую, сохраняя свою жизнеспособность. При попадании спор на планету с подходящими условиями для жизни они прорастают и дают начало биологической эволюции.

В несколько иных формах эти представления возрождаются в наше время. Например, Ф. Хойл выдвинул идею о возможности существования микроорганизмов в межзвездном пространстве. Согласно его представлениям, облака космической пыли сложены преимущественно бактериями и спорами. Предполагается, что в промежутке времени 4,6-3,8 млрд лет назад на Земле были возможны два события — или зарождение жизни на самой планете, или привнес микроорганизмов из космического пространства. Ф. Хойл и С. Викрамасинг в 1981 г. допустили, что последнее более вероятно. Согласно их расчетам, ежегодно в верхнюю атмосферу Земли поступает 1018 космических спор, как остаток твердого материала, рассеянного в Солнечной системе. Таким образом, кометы являются переносчиками зародышей жизни, которые образовались ранее в межзвездном пространстве и лишь затем попали в облако Оорта.

Следует отметить крайнюю фантастичность высказанных представлений, которые не согласуются с известными экспериментальными данными. Однако несомненно, что жизнь связана с космосом по атомному составу и в энергетическом отношении. Это можно видеть из табл. 6, в которой даны величины относительного распространения элементов в космосе, в летучей фракции комет, в бактериях и млекопитающих. Обращает на себя внимание большая близость, а в отдельных случаях и тождественность космического вещества и живого вещества Земли. Главные элементы живого вещества — это широко распространенные элементы космоса. При этом Н, С, N, О — типичные биофильные элементы — наиболее широко распространены в природе.

Нетрудно сделать вывод, что живые организмы в первую очередь используют наиболее доступные атомы, которые, кроме того, способны образовывать устойчивые и кратные химические связи. Известно, что углерод может формировать длинные цепи, что приводит в возникновению бесчисленных полимеров. Сера и фосфор также могут образовывать кратные связи. Сера входит в состав белков, а фосфор — в состав нуклеиновых кислот.

В соответствующих условиях наиболее распространенные атомы соединяются друг с другом, образуя молекулы, которые обнаружены в космических облаках методами современной радиоастрономии. Большая часть известных космических молекул относится к органическим, включая наиболее сложные 8- и 11-атомные. Таким образом, в отношении состава космохимия Вселенной создает обширные возможности для различных комбинаций углерода с другими элементами по законам химической связи.

Однако проблема образования молекул в космических условиях относится к труднейшим проблемам космохимии. Собственно в межзвездной среде, даже в наиболее плотных ее участках, элементы находятся в условиях, далеких от термодинамического равновесия. В силу низкой концентрации вещества химические реакции в межзвездном пространстве крайне маловероятны. Поэтому было высказано предположение, что в построении межзвездных молекул принимают участие частицы космической пыли. В наиболее простом случае могут возникать молекулы водорода при контакте его атомов с твердыми частицами, Наиболее распространенные молекулы космоса СО, вероятно, способны зарождаться в условиях звездных атмосфер при достаточной плотности вещества и затем выбрасываться в космическое пространство.

В настоящее время все более четко вырисовывается роль твердой фазы в формировании молекул органических веществ в космическом пространстве. Наиболее вероятные модели этого процесса разработаны Дж. Гринбергом [1984]. По мнению ученого, частицы космической пыли имеют сложное строение и состоят из ядра преимущественно силикатного состава, окруженного оболочкой из органических веществ. В оболочке, по-видимому, происходят различные химические процессы, ведущие к усложнению строения первоначального вещества. Структура подобных пылевых частиц после первой стадии аккреции подтверждается путем экспериментального моделирования на смеси воды, метана, аммиака и других простых молекул, облученных ультрафиолетовой радиацией при температуре примерно 10 К. Каждая пылинка ведет свое начало от силикатного ядра, возникшего в атмосфере холодной звезды-гиганта. Вокруг ядра формируется ледяная оболочка. Под действием ультрафиолетового излучения некоторые молекулы оболочки (H2O СН4, NH3) диссоциируют с образованием радикалов — реакционноспособных фрагментов молекул. Эти радикалы могут рекомбинировать с образованием других молекул. В результате длительного облучения может появиться более сложная смесь молекул и радикалов (HN2HCO, HOCO, СН3ОН, СН3С и др.). При разрушении пылинок под влиянием космических факторов возникшие на их поверхности соединения образуют молекулярные облака.

вернуться

1

Панспермия (от греч. «пан» — весь, всеобщий, «сперма» — семя) — древнее учение о повсеместном распространении во Вселенной вечных и неизменных зародышей жизни. Впервые встречается у древнегреческого философа Анаксагора (500-428 до и. э.).