Выбрать главу

2. Передатчик берет другой атом, тот, который он хочет телепортировать (С), и интерферирует его с А. В процессе происходит коллапс волновой функции и А, и В на приемном конце. Мы уже видели, что интерференция и наблюдение влияют на волновые функции именно так, и в результате С тоже меняется. Это все равно что сказать, что объект, который вы передали, уничтожен.

3. Приемник на своем конце проделывает то же самое, но интерферирует атом-мишень D со своим измененным и запутанным атомом В. Его интерференция также влияет на D, но производит обратный эффект, и D приобретает оригинальную волновую функцию атома С.

Телепортация — дело необычайно трудное. Лишь в 1997 году удалось телепортировать один-единственный фотон, и лишь в 2004 году несколько групп ученых сумели телепортировать один-единственный атом, да и то всего на расстояние в несколько метров. Учитывая, сколько потребовалось трудов, было бы проще просто перенести атом из одного места в другое.

Чем крупнее система, тем сложнее ее телепортировать. Даже телепортация одной молекулы пока что далеко за пределами наших экспериментальных способностей. Так что хотя телепортация, строго говоря, возможна, пройдет еще очень много времени, прежде чем станет отдаленно возможной телепортация человека, да и тогда мы бы не рекомендовали ее практиковать.

VI. Если в лесу падает дерево и никто этого не слышит, производит ли оно грохот?

Наши примеры были сосредоточены на микроскопических частицах, однако мы вовсе не утверждали, что для того, чтобы вести себя по-квантовому, частица обязательно должна быть крошечной. Более того, на самом деле мы доказывали, что вся наша Вселенная имеет фундаментально квантовую природу. В самом деле, если микроскопический мир управляется исключительно квантовыми законами, нельзя ли обобщить их и счесть, что и мы подчиняемся этим правилам?

И да и нет.

Возьмем, к примеру, принцип неопределенности[33].

Когда мы говорили о нем, то оставили в стороне все сложные математические выкладки (читайте: всю математику), поэтому сейчас должны добавить еще одну детальку. Чем массивнее частица, тем точнее мы способны вычислить и ее местоположение, и ее скорость.

Например, представьте себе, что мы проделываем опыт с двумя щелями с потоком электронов. Если две щели разнесены на миллиметр, то мы вправе предположить, что неопределенность положения электрона — примерно миллиметр. Иначе никак — ведь мы не знаем, сквозь какую щель прошел электрон. Пожонглировав немного цифрами, мы обнаружим, что скорость электрона неопределенна примерно на 160 метров в час. Не слишком большое число, зато оно поддается измерению.

А если мы измерим скорость Хайда (когда он, например, скрывается с места преступления) с точностью до 160 метров в час? Это гораздо точнее, чем точность любого прибора, который может оказаться у вас под рукой. Предположим, что поскольку мы вычислили скорость Хайда с вполне осязаемой и измеряемой точностью, в его местоположении должна быть неопределенность. Она и есть. Местоположение Хайда неопределенно с точностью примерно одна десятиквинтиллионная доля размера ядра атома. На более мелком масштабе Хайд вел бы себя как волна. Поскольку сам он гораздо крупнее одной десятиквинтиллионной доли размера ядра атома, то во всех мыслимых ситуациях ведет себя как частица. То есть нет никаких представимых обстоятельств, в которых макроскопические предметы (вроде нас с вами, Джекила и Хайда) будут вести себя как квантовые объекты.

Вернемся к вопросу, с которого мы начали эту главу, и поговорим о классическом эксперименте, который глубоко запал в общественное сознание, — об Эрвине Шредингере и его легендарном коте.

Пусть Хайд, этот бессердечный негодяй, сделает ящик с флаконом яда внутри. Если некий радиоактивный атом, также заключенный в этот ящик, распадается за определенный отрезок времени, яд попадет в ящик. Если атом не распадется, яд останется во флаконе. Затем Хайд сажает в ящик кота и закрывает крышку[34].

Назначенное время прошло. Жив кот или мертв?

Этот вопрос Шредингер задал еще в далеком 1935 году — как бы между прочим, в одной длинной сугубо технической статье, — и обсуждение его заняло не больше места, чем в нашей книге. И хотя загадка шредингеровского кота ничего не говорит нам о том, как создать квантовый компьютер или микросхему, она заставляет задать некоторые вопросы о подлинной природе Вселенной. Оказывается, есть несколько способов отравить кота — или по крайней мере интерпретировать факт отравления.

вернуться

33

Фанфары!

вернуться

34

Чтобы расставить все точки над i уточним, что эксперимент этот сугубо мысленный. Однако он наводит на самые печальные мысли относительно психического склада Шредингера.