Выбрать главу
Аннали Ньюиц, редактор и оператор поля искажения времени на сайте http://i09.com

Посвящается Эмили, Уилле и Лили — вы моя жизнь, любовь и вдохновение

Следует помнить, что то, что мы наблюдаем — это не природа как таковая, а природа, подвергнутая нашему методу задавать вопросы.

Вернер Гейзенберг

Введение

В котором я рассказываю, что да как, поэтому его лучше не пролистывать

Почему на свете есть что-то, а не ничего? Почему будущее не такое, как прошлое? Почему серьезному человеку приходят в голову подобные вопросы?

Когда говоришь о популярной науке, впадаешь в этакий удалой скептицизм посвященного. Почитаешь все эти твиты и блоги — и складывается впечатление, будто теория относительности — не более чем досужая болтовня какого-то пижона на вечеринке, а не одна из самых удачных физических теорий в истории человечества, которая вот уже сто лет выдерживает все экспериментальные и наблюдательные проверки.

С точки зрения непосвященного, физика что-то уж больно перегружена всякими законами и формулами. Неужели нельзя попроще? Да и сами физики зачастую упиваются отстраненной сложностью своих конструкций. Когда сто лет назад сэра Артура Эддингтона спросили, правда ли, что общую теорию относительности Эйнштейна понимают всего три человека в мире, он задумался, а потом небрежно заметил: «Пытаюсь понять, кто же третий». Сегодня теория относительности входит в стандартный арсенал каждого физика, ее изо дня в день преподают вчерашним, а то и сегодняшним школьникам. Так что пора отказаться от высокомерной мысли, что понимание тайн мироздания доступно лишь гениям.

Глубокие озарения, касающиеся устройства нашего мира, почти никогда не были результатом изобретения новой формулы, будь ты Эддингтон или Эйнштейн. Наоборот, прорывы почти всегда происходят тогда, когда мы понимаем, что раньше мы думали, будто это разные вещи, а на самом деле это одно и то же. Чтобы понять, как все устроено, надо разобраться в симметрии.

Великий физик XX века, нобелевский лауреат Ричард Фейнман[1] уподобил мир физики игре в шахматы. Шахматы — игра, полная симметрии. Поверни доску на пол-оборота — она будет выглядеть точно так же, как и в начале. Фигуры на одной стороне, за исключением цвета, — почти что идеальное зеркальное отражение фигур на другой. Даже правила игры обладают симметрией. Вот как говорит об этом Фейнман:

По правилам, слон движется по шахматной доске только по диагонали. Можно сделать вывод, что сколько бы ходов ни миновало, определенный слон всегда останется на белом поле… Так и будет, причем довольно долго — но вдруг мы обнаруживаем, что слон оказался на черном поле (на самом-то деле произошло вот что: за это время слона съели, но одна из пешек дошла до последнего ряда и стала слоном на черном поле). Так и с физикой. У нас есть закон, который долго-долго действует универсально, даже когда мы не можем отследить все подробности, а потом наступает момент, когда мы можем открыть новый закон.

Понаблюдайте за игрой еще несколько раз — и вас внезапно осенит, что слон остается на полях одного и того же цвета именно потому, что ходит только по диагонали. Закон сохранения цвета обычно действует, однако более глубокий закон требует более глубокого объяснения.

Симметрия в природе проявляется практически везде — даже если она ничем не примечательна или даже очевидна и банальна. Крылья бабочки — идеальное отражение друг друга. Функции их идентичны, однако я бы очень сильно пожалел бедняжку-бабочку с двумя левыми или двумя правыми крыльями — она бы беспомощно летала по кругу. Симметрия и асимметрия в природе, как правило, вынуждены соревноваться друг с другом. В конечном итоге симметрия — инструмент, при помощи которого мы не просто формулируем законы, но и разбираемся, почему они действуют.

Скажем, пространство и время совсем не так различны, как может показаться. Они словно правое и левое крылья бабочки. Подобие между ними и легло в основу специальной теории относительности — и породило самую знаменитую формулу во всей физике. По всей видимости, законы физики не меняются со временем — эта симметрия позволяет сделать вывод о сохранении энергии. И это тоже хорошо: именно благодаря сохранению энергии наша гигантская батарейка — Солнце — умудряется питать всю жизнь на Земле.

вернуться

1

Лучше, чем прочитать «Фейнмановские лекции по физике» — только их прослушать. Цитата взята из аудиозаписи лекции, которую Фейнман прочитал в Калифорнийском Технологическом институте. Вообще-то он собирался читать лекции первокурсникам, однако к концу семестра все места, судя по всему, заняли его коллеги.