Итак, на первой ступени в развитии счета и вычисления каждое число имеет свою «индивидуальность». На второй ступени такую «индивидуальность» имеют лишь узловые числа. Например, в нашей десятичной системе 1,10, 100… Впрочем, существуют еще так называемые алфавитные системы нумерации. К ним относилась и древняя славянская. В ней специальные знаки были не только для 1,10, 100, но и для 2, 3, 20, 30, 200, 300 и т. д. — соответственно словам: «двадцать», «тридцать», «двести»… Алфавитная система нумерации сохранилась — как своеобразный пережиток — и поныне: мы часто нумеруем тезисы, параграфы, вопросы не 1), 2), 3), а а), б), в)…
Если по-древнерусски число, скажем, 1936 обозначалось как АЦЛЗ,Х е 1000 + 900 + 30 + 6 (тысяча — девятьсот— тридцать — шесть), то в системах, где собственные обозначения имелись лишь у узловых чисел, приходилось тратить гораздо больше знаков, но зато и удобнее было считать. Например, по-древнегречески это число выглядело ХРННННДДДГ1, т. е. 1000 + 500 + 100 + 100 + 100 + 100 + 10 + 10 + + 10 + 5 + 1 (у греков, в отличие от нашей системы, в качестве узлового числа выступают еще пятерка и кратные ей числа)[11]. Такому счету «по узловым числам» соответствует устройство общеизвестного прибора — русских счетов. Примерно так же считают некоторые негритянские племена в Южной Африке, У них для счета нужны три человека. Мимо одного из них проходят один за другим быки, и для каждого быка загибается палец. Как только счетчик загнет все десять пальцев, второй счетчик загибает один палец, обозначив таким образом десятки. Когда же не хватит пальцев и у второго счетчика, вступает в дело третий, специализирующийся на сотнях. На островах Тихого океана используют для этой же цели камешки или куски скорлупы кокосового ореха — маленькие для десятков, большие для сотен.
Наша, так называемая позиционная, система исчисления и записи менее «очевидна» и требует известной условности. Она возникла, по-видимому, в Древней Индии, откуда мы через посредство арабов заимствовали не только самую систему, но и арабские цифры. Причем вот что любопытно: историки математики обнаружили, что у древних индусов еще до появления позиционной записи существовала словесная система обозначения чисел, употреблявшаяся преимущественно в научных трудах. Строго говоря, были даже две системы. Одна сокращенная. В ней каждое число обозначалось названием предмета, который обычно встречается в данном количестве (например, единица обозначалась словом «луна», 2 — «глаза», 5 — «чувства»), И число 125 читалось как «чувства — глаза — луна». Другая была более строгой: в ней существовали специальные слова для всех разрядов вплоть до 10(16), и, скажем, число 1936 читалось по-древнеиндийски «одна тысяча девять сотен три десятка шесть».
Легко видеть, что здесь встретились два принципа: принцип «мультипликативности», т. е. представление, скажем, 900 как 9 х 100, 30 — как 3 х 10 и т. д., и собственно «позиционный» — принцип линейного расположения цифр, соответствующих последовательным разрядам: 5–2–1 (или, что то же самое, 1–2—5). Наша система нумерации своего рода гибрид двух принципов.
Почему же она, несмотря на меньшую наглядность, вытеснила все прочие системы и единовластно воцарилась в математической теории и практике? Как пишет советский историк математики В. И. Лебедев, «причина довольно простая. Нумерации: словесная, азбучная, римская, клинообразная и т. д. — являются пригодными только для записывания результата исчисления: наша система способствует с удивительной силой самому выполнению счета. Попробуйте перемножить.
11
Почему мы не взяли в качестве примера римские цифры? Потому что в римской системе записи применяется и вычитание. То же самое число 1936 записывается здесь как MCMXXXVI, т. е. 1000 + (1000 — 100) + 10 + 10 + 10 + 5 + 1.