Выбрать главу
8

Решающим свершением Декарта, чья «Геометрия» вышла в свет в 1637 г., явилось не введение нового метода или точки зрения в области традиционной геометрии, как это постоянно изображают, но окончательная концепция новой идеи числа, которая выразилась в отделении геометрии от зрительных средств конструкции, вообще от измеренных и измеримых отрезков. Тем самым анализ бесконечно малых сделался свершившимся фактом. Декарт, если проникнуть в глубину его помыслов, не усовершенствовал жесткую, так называемую декартову систему координат, это идеальное представление измеримых величин в полуевклидовом смысле, которая имела величайшее значение в предыдущий период, например у Оресма, но ее преодолел. Его современник Ферма был ее последним классическим представителем.

На место чувственного момента конкретных отрезков и поверхностей, этого специфического выражения античного ощущения границы, заступает абстрактно-пространственный, а значит, неантичный момент точки, характеризуемой отныне как группа взаимноупорядоченных чистых чисел. Декарт уничтожил пришедшее из античных текстов и арабской традиции понятие величины, чувственного размера, и заменил его переменным значением соотношения положений в пространстве. Это было упразднение геометрии как таковой, которая начиная с этого момента ведет в пределах числового мира лишь призрачное, завуалированное античными реминисценциями существование, однако этого никто не заметил. Слово «геометрия» ни за что не отлучить от присутствующего в нем аполлонического смысла. Начиная с Декарта эта якобы «новая геометрия» представляет собой либо синтетическую деятельность, которая числами определяет положение точек в теперь уже не обязательно трехмерном пространстве («точечное многообразие»), либо аналитическую, которая определяет уже числа положением точек. Однако заменить отрезки положениями – это значит понимать протяжение теперь уже чисто пространственно, а не телесно.

Мне представляется, что классическим примером этого уничтожения наследия доставшейся от предыдущих поколений конечно-оптической геометрии является обращение круговых функций (которые в каком-то едва ли постижимом для нас смысле были «числами» индийской математики) в циклометрические с их последующим разложением в ряды, утратившие в бесконечной числовой области алгебраического анализа хотя бы самое отдаленное напоминание о геометрическом образе в духе Евклида. Число круга, π, возникая повсюду вновь и вновь в этой числовой области в качестве основания натуральных логарифмов е, порождает отношения, изглаживающие все границы прежних геометрии, тригонометрии и алгебры, которые не имеют теперь ни арифметического, ни геометрического характера: теперь в связи с ними никто более не имеет в виду ни действительно вычерченного круга, ни степеней, которые следует вычислить.

9

Между тем как благодаря Пифагору ок. 540 г. античная душа пришла к открытию своего, аполлонического числа как измеримой величины, душа Запада в точно соответствующий временной момент отыскала благодаря Декарту и его поколению (Паскаль, Ферма, Дезарг) идею числа, родившуюся из неодолимого фаустовского пристрастия к бесконечному. Число как чистая величина, пристегнутая к телесному присутствию единичной вещи, находит свое контрастное подобие в числе как чистом отношении[54]. Если античный мир, космос, исходя из его глубокой потребности в зримой ограниченности, может быть определен как исчисленная сумма материальных вещей, то наше мироощущение осуществилось в картине бесконечного пространства, в котором все зримое, как обусловленное в противоположность необусловленному, воспринимается едва ли не как действительность второго порядка. Его символом оказывается решающее понятие функции, и намека на которое нет ни в одной другой культуре. Функция – это отнюдь не расширение какого бы то ни было из существующих понятий числа; она представляет собой полное его преодоление. Тем самым для действительно значимой математики Западной Европы утрачивает ценность не только евклидова, а значит, «общечеловеческая», основанная на повседневном опыте геометрия детей и профанов, но и архимедова сфера элементарного счета, арифметика. Отныне существует лишь абстрактный анализ. Для людей античности геометрия и арифметика были замкнутыми в самих себе и совершенными науками высшего ранга; процедуры той и другой были наглядными, имевшими дело с величинами через черчение или счет. Для нас же они – лишь практические вспомогательные средства повседневной жизни. Два античных метода вычисления величин, сложение и умножение, эти братья графических построений, полностью исчезают в бесконечности функциональных процессов. Сама степень, являющаяся поначалу лишь числовым обозначением определенной группы умножений (для произведений одинаковых величин), оказывается – в новом символе экспоненты (логарифма) и его применении в комплексной, отрицательной, дробной форме – всецело отделенной от понятия величины и переведенной в мир трансцендентных отношений, который должен был оставаться недоступным грекам, знавшим лишь две положительные, целочисленные степени в качестве представителей поверхностей и тел, – довольно будет привести такие выражения, как

вернуться

54

Это в точности отвечает соотношению монеты и двойной бухгалтерии в денежном мышлении той и другой культуры, ср. с. 1029 слл.