Надеемся, этим примером нам удалось показать вам, что система использует некоторое количество энергии хаотичных столкновений молекул, чтобы поддерживать один из своих участков в упорядоченном состоянии. В термодинамике для описания мер неупорядоченности системы используется термин «энтропия». Соответственно, о высокоупорядоченном состоянии системы говорят как о состоянии с низкой энтропией. О системе нашего бильярдного стола можно сказать, что она пользуется энергией высокоэнтропийных (хаотичных) столкновений для поддержания одной из своих частей, пирамиды шаров, в упорядоченном состоянии с низкой энтропией.
Не думайте о том, каким образом можно соорудить подобную замысловатую конструкцию. Главное, что на нашем столе (в системе, в которой наблюдаются состояния с разной энтропией) происходит нечто весьма интересное. Имея в распоряжении лишь силу хаотично движущихся шаров, новая система, объединяющая шары, стол, планку, датчик, фиксирующий движение шаров, и незримую руку, перенаправляющую движение, способна поддерживать порядок в собственной подсистеме.
Давайте усложним задачу для нашего воображения и представим более сложную картину: на этот раз некоторое количество энергии движущейся планки (назовем ее свободной энергией[12] системы) будет использоваться для создания и поддержания работы сенсорного устройства и подвижной незримой руки. В первую очередь энергия будет направлена на то, чтобы использовать огромное количество бильярдных шаров в качестве строительного материала для построения подобных устройств. Теперь вся система становится самодостаточной и в принципе способна поддерживать сама себя до тех пор, пока в нее регулярно будут попадать новые хаотично движущиеся шары и для планки будет достаточно места, чтобы двигаться.
Наконец, будучи способной поддерживать себя в определенных состояниях, наша расширенная система совершит еще один удивительный подвиг. Она станет использовать доступную свободную энергию для обнаружения, захвата и упорядочения бильярдных шаров в целях создания собственной копии во всей полноте: стол, планка, сенсорное устройство, реагирующее на движение шаров, механическая рука и, разумеется, шары, уложенные треугольником. Подобные копии системы, в свою очередь, будут управлять собственными бильярдными шарами и свободной энергией их столкновений, производить новые самодостаточные механизмы, а эти новые копии…
Думаем, вы догадались, к чему это ведет. Наш воображаемый проект «Сделай сам» создал эквивалент жизни, движущей силой которой является энергия бильярдных шаров. Подобно птице, рыбе или человеку, наша выдуманная система способна поддерживать собственный внутренний порядок и воспроизводить саму себя, управляя свободной энергией хаотичных столкновений молекул. Несмотря на то что это многоэтапное и сложное задание, движущая сила, необходимая для его выполнения, похоже, ничем не отличается от силы, толкающей паровоз вверх по склону холма. В реальной жизни в роли воображаемых бильярдных шаров выступают молекулы, получаемые из пищевых продуктов. Хотя процесс, в который они вовлечены, намного сложнее процесса, описанного в нашем простом примере, принцип остается неизменным: свободная энергия хаотичных молекулярных столкновений (и химических реакций, в которых участвуют молекулы) направлена на поддержание жизнедеятельности организма и на создание копии этого организма.
Можно ли в таком случае считать жизнь разделом термодинамики? Неужели во время прогулки среди холмов мы взбираемся по склону благодаря тем же процессам, что приводят в движение паровые локомотивы? Неужели полет малиновки ничем не отличается от полета пушечного ядра? Если уж на то пошло, не является ли Божья искра жизни хаотичным движением молекул? Чтобы ответить на эти вопросы, нам следует внимательно присмотреться к тонкой организации живой материи.
Присмотримся к жизни внимательней
Первые успешные и очень важные шаги на пути к пониманию тонкой организации живого были сделаны «философом-натуралистом» XVII века Робертом Гуком, который, заглянув в простейший микроскоп, разглядел в структуре среза пробкового дерева нечто, что он назвал клетками, и голландским натуралистом, основоположником микроскопии Антони ван Левенгуком, который с помощью микроскопа обнаружил в каплях озерной воды существ, которых он сам назвал микроскопическими организмами (мы объединяем этих существ общим названием «одноклеточная жизнь»). Он также наблюдал и описывал клетки растений, красные кровяные тельца — эритроциты и даже сперматозоиды. Позже всему научному миру стало ясно, что любая живая ткань имеет клеточную структуру, а клетки являются строительным материалом живых организмов. В 1858 году немецкий биолог и врач Рудольф Вирхов писал: «Подобно тому как дерево представляет известным образом расположенную массу, в каждой части которой, в листе, как и в корне, в стволе, как и в цветке, последними элементами являются ячейки, точно так же и в формах животного царства каждое животное является суммой жизненных единиц, каждая из которых обладает всеми характеристиками жизни».
12
Свободная энергия — одно из важнейших понятий термодинамики, содержание которого описание, приведенное в данной главе, иллюстрирует достаточно точно.