Как известно, большинство современников Менделя, включая Дарвина, не обратили на открытие австрийца никакого внимания. Результаты его трудов оставались в забвении вплоть до начала XX века. Его «факторы» были названы генами. Вскоре это понятие было успешно встроено в укрепляющий свои позиции в биологии XX века механистический взгляд на мир. Несмотря на то что Мендель утверждал, что эти структуры находятся внутри живых клеток, никто в то время не наблюдал их и не мог предположить, из чего они состоят. Однако в 1902 году американский генетик Уолтер Саттон обратил внимание на то, что внутриклеточные структуры хромосомы способны передавать информацию, хранящуюся в менделевских «факторах». Это наблюдение привело Саттона к выводу о том, что гены находятся в хромосомах.
Тем не менее хромосомы — это относительно большие и сложные структуры, состоящие из белка, сахаров и дезоксирибонуклеиновой кислоты (ДНК). В то время ученым не было понятно, связан ли какой-либо из этих компонентов с механизмом наследственности. Позднее, в 1943 году, канадскому ученому Освальду Эвери удалось передать ген из одной бактериальной клетки в другую путем извлечения ДНК из клетки-донора и встраивания ее в клетку-реципиент. Эксперимент доказал, что именно ДНК, содержащаяся в хромосомах, а не белки или какие-либо другие вещества, хранит и передает генетическую информацию[14]. Казалось, в ДНК больше нет ничего необычного, волшебного — все считали ее обычным химическим веществом.
Но важный вопрос все же оставался без ответа: как это все работает? Каким образом химическое вещество переносит в себе информацию, необходимую для того, чтобы «семя петуха „чеканило“ из яйцеклетки цыпленка»? И каким образом гены копируются и передаются от одного поколения другому? Традиционная химия, изучающая взаимодействия шаровидных больцмановских молекул, казалось, не может объяснить способ хранения, копирования и надежной передачи генетической информации.
Наверняка всем известно, что в 1953 году была разгадана и эта тайна: в Кавендишской лаборатории Кембриджского университета Джеймсу Уотсону и Фрэнсису Крику на основе экспериментальных данных их коллеги Розалинд Франклин удалось разработать модель структуры ДНК — двойную спираль. Было доказано, что любая цепочка ДНК представляет собой нечто вроде молекулярной нити, состоящей из атомов фосфора, кислорода и сахара (дезоксирибозы), а также особых химических структур — нуклеотидов[15], нанизанных на нить, словно бусины. В этих бусинах содержатся азотистые основания четырех разновидностей: аденин (A), гуанин (G), цитозин (C) и тимин (T). На нити ДНК они располагаются в одномерной последовательности букв генетического кода, например GTCCATTGCCCGTATTACCG. Во время войны Фрэнсис Крик работал в научно-исследовательской лаборатории Британского адмиралтейства (в то время — командный орган Королевского флота). Неудивительно, что он мог быть знаком с теорией кодов, а также с различными шифрами вроде тех, что использовались в секретных сообщениях, созданных с помощью немецких шифровальных машин «Энигма» (во время войны их успешно расшифровывали в Блетчли-Парке, где располагалось главное шифровальное ведомство Великобритании). В любом случае, когда Крик увидел нить ДНК, он сразу заметил в ней код — последовательность блоков информации, представляющей собой важнейшие инструкции к действию механизма наследственности. Кроме того (об этом мы подробно поговорим в главе 7), открытие спиралевидной структуры нити ДНК позволило ученым сформулировать ответ на вопрос о том, каким образом копируется генетическая информация. Вот так, одним махом были разгаданы две величайшие научные тайны.
Открытие структуры ДНК стало своего рода механистическим ключом к пониманию тайны генов. Гены — это химическое соединение, а в основе химии лежит термодинамика. Так неужели открытие двойной спирали ДНК наконец-то вернуло в лоно классической науки такой объект изучения, как жизнь?
14
Как ни странно, в то время эксперименты Эвери не были приняты учеными в качестве достаточного доказательства того, что генетическим материалом является именно ДНК. Споры об этом разгорелись с новым жаром лишь во времена Крика и Уотсона.
15
Каждый нуклеотид состоит из азотистого основания, в структуру которого входят углерод, азот, кислород и водород, а также хотя бы одной фосфатной группы. Все эти соединения закреплены на длинной нити ДНК.