Выбрать главу

Тем не менее существовало множество доказательств того, что свет распространяется как непрерывная волна. Как же свет может быть одновременно прерывным и непрерывным? В то время этот вопрос казался бессмысленным, по крайней мере в рамках классической науки.

Следующий гигантский шаг на пути к новой физике был сделан датским физиком Нильсом Бором. В 1912 году Бор переехал в Манчестер и стал работать с Эрнестом Резерфордом. Незадолго до того Резерфорд опубликовал работу о планетарной модели атома с крошечным, но крепким ядром, расположенным в центре и окруженным еще более крошечными электронами, вращающимися вокруг ядра. Однако никто не мог объяснить, как атому удается сохранять стабильность. Согласно классической электромагнитной теории, отрицательно заряженные электроны постоянно излучают энергию света, вращаясь вокруг положительно заряженного ядра. В таком случае они бы потеряли энергию и очень быстро (за одну миллионную секунды) закрутились бы по спиральной траектории по направлению к ядру, что привело бы к распаду атома. Однако электроны так себя не ведут. Так в чем же здесь дело?

Для объяснения стабильности атомов Нильс Бор выдвинул идею о том, что электроны не свободны в выборе любой орбиты вокруг ядра, а могут занимать лишь определенные стационарные («квантованные») орбиты. Электрон может излучать порцию (квант) электромагнитной энергии лишь при переходе на другую, более низкую, орбиту, причем величина излучаемой энергии будет равна разнице энергий орбит. При переходе на более высокую орбиту электрон поглощает электромагнитную энергию в размере одного фотона.

Попробуем наглядно продемонстрировать разницу между классической и квантовой теорией, а также объяснить, почему электрон может занимать только определенные стационарные орбиты в атоме. Давайте вспомним, как играются ноты на гитаре и на скрипке. Когда скрипач берет ноту, он зажимает пальцем одну из струн в каком-либо месте грифа, сокращая ее и таким образом добиваясь нужной ноты в тот момент, когда смычок касается струны, вызывая ее колебания. Чем короче струна, тем выше частота ее колебаний (больше колебаний в секунду) и тем выше получается звук. Чем длиннее область колебания струны, тем ниже частота колебаний (меньше колебаний в секунду) и тем ниже звук.

Прежде чем продолжить эту тему, скажем несколько слов об одном из фундаментальных принципов квантовой механики, а именно о тесной связи частоты колебаний и энергии[18]. Мы уже говорили о том, что субатомные частицы имеют также свойства волны. Это означает, что у них, как и у любой волны, распространяющейся в пространстве, есть такие показатели, как длина волны и частота колебаний. Быстрые колебания всегда подразумевают больше энергии, чем медленные колебания (представьте стиральную машину, работающую в режиме «отжим» — ее барабан должен вращаться (колебаться) на высокой частоте, чтобы получить достаточно энергии для отжима воды из одежды).

Вернемся к скрипке. Высота ноты (частота колебаний звука) может постоянно варьироваться в зависимости от длины колеблющейся струны, то есть расстояния от места закрепления струны до той точки на грифе, где она зажимается пальцем музыканта. Это сравнимо с обычной волной, длина которой (расстояние между двумя ближайшими вершинами) также может меняться. Именно поэтому мы отнесем скрипку к классическим инструментам, но не в смысле «классической музыки», а скорее в смысле «классической — не квантовой — физики». Вот почему так сложно научиться играть на скрипке: музыкант должен максимально точно знать, в каком месте грифа прижимать струну, чтобы извлечь нужную ноту.

Гитарный гриф устроен по-другому. На нем металлическими перегородками, которые выступают над грифом, но не касаются струн, отмечены лады. Таким образом, когда гитарист прижимает пальцем струну, она касается одной из перегородок, которая временно становится одним из ее концов (а вовсе не то место, где ее прижимает палец). Когда музыкант дергает струну, из нее извлекается звук, высота которого зависит от колебаний струны длиной от мостика до того лада, на котором зажата струна. Положение пальца, зажимающего струну (ближе к правой перегородке или ближе к левой), никак не повлияет на высоту извлекаемой ноты. Гитара, таким образом, относится к квантовым инструментам. Поскольку, согласно квантовой теории, частота колебаний и энергия взаимосвязаны, колеблющаяся гитарная струна должна обладать скорее дискретной, нежели непрерывной энергией. Подобным образом элементарные частицы, например электроны, обладают лишь определенными показателями частоты волны, каждый из которых связан с определенным уровнем дискретной энергии. При переходе из одного энергетического состояния в другое электрон поглощает или излучает энергию, равную разнице между энергетическим уровнем, который он покидает, и уровнем, на который он попадает.

вернуться

18

Кстати, отношение энергии и частоты излучения выражено в уравнении, предложенном Максом Планком в 1900 году: E = ħω, где E — энергия, ω — частота, а ħ — величина, получившая название «постоянная Планка». Из уравнения видно, что величина энергии прямо пропорциональна показателю частоты.